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Abstract We reexamine two canons of the seismological literature, that elastic dis-
placements in the far field are proportional to slip velocities on the dynamical fault
surface, and that dynamical in-plane slip on an earthquake fault has a double-couple
body force equivalent. We show that if faulting takes place on a fault of finite thick-
ness, and there is a strength-weakening zone near the advancing crack tip, there is an
additional single-couple term in the body force equivalence and additional terms in the
far-field displacement, which are proportional to the time rate of increase of stress
drop in the advancing weakening zone. We also show that the single-couple equivalent
does not violate principles of Newtonian mechanics because the torque imbalance in
the single couple is counterbalanced by rotations within the fault zone; the crack there-
fore radiates torque waves and a rotational deformation field.

Introduction

The proportionality between elastic displacements in the
far field and slip velocities on a dynamical fault surface
(Knopoff and Gilbert, 1960; Haskell, 1964, 1966) and the
statement that dynamical in-plane slip on an earthquake fault
has a double-couple body force equivalent (Knopoff and Gil-
bert, 1960; Maruyama, 1963; Burridge and Knopoff, 1964;
Stauder and Bollinger, 1964, 1966) are two canons of the
seismological literature. The first is a basis for calculations
of seismic energy radiated from earthquake events (Knop-
off and Gilbert, 1960; Haskell, 1964, 1966; Kostrov, 1970,
1974), and the second is a basis for seismic moment calcula-
tions (Aki, 1966). These two statements are directly related.
We show that both statements must be modified if a fracture
takes place on a fault of finite thickness and if there is a
strength-weakening zone near the advancing crack tip.

The statement of proportionality between the far-field
displacement and the slip velocity would appear to be contra-
dicted by classical integrations of the scalar wave equation
by Kirchhoff in 1882 (Born and Wolf, 1959, pp. 374–377)
and the elastic wave equation by Knopoff (1956) and Knop-
off and Gilbert (1960), in which the field at great distance
would seem to be dependent not only on the value of the
time derivative of the field on a surface Σ, which we take
to be the fracture surface of an elastic rupture but also on
the spatial gradient of the slip. The Kirchhoff integration
of the scalar wave equation is the more transparent and illus-
trative of the two. The solution to the scalar wave equation
for radiation from sources on a closed surface Σ enclosing a
volume V is (Stratton, 1941, p. 427, equation 22)

ψ�x; t� � 1

4π

Z
Σ

�
1

R
�∇ψ� � 1

R2
�ψ�γ � 1

cR
� _ψ�γ

�

· n�ξ�dΣ�ξ�;

where the brackets �f�t�� denote time retardation by R=c,
�f�t�� � f�t � R=c�; c is the wave velocity; the vector R ex-
tends from a point ξ on the surface to the point of observation
at x, R � x � ξ, R � jRj, and γ is the unit vector along R,
γ � R=R; n�ξ� is the outward drawn unit normal to the sur-
face. The surface integral includes the contribution from
sources outside V. If ψ and its spatial gradient and time de-
rivative are known everywhere on Σ, ψ is completely deter-
mined at all interior points of the volume enclosed by Σ
(provided that it is not possible to assign these values arbi-
trarily). In the far field the solution for the wave function
includes the first and third of the terms just listed,

ψ�x; t� � 1

4π

Z
Σ

�
1

R
�∇ψ� � 1

cR
� _ψ�γ

�
· n�ξ�dΣ�ξ�:

The second of these latter terms is the expected, conventional
component, which is proportional to its time derivative at the
surface. The first term, which depends on the normal com-
ponent of the spatial gradient on the surface, has been ne-
glected in the treatment of radiation in the seismological
literature to date.

In the elastic wave case Knopoff’s solution (Knopoff,
1956, p. 223, equation 43) is quite complicated but consists
of terms similar to those just discussed, which we do not re-
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produce here for simplicity. The solution has two classes of
terms with retardations having P- and S-wave velocities;
each class includes terms with the two types of spatial (vec-
tor) differentiation (divergence and curl) and terms with the
time derivative of the displacement on the surfaces. We re-
frain from being more explicit regarding the operators, which
are relatively complex. Kirchhoff’s solution for the scalar
wave equation and Knopoff’s solution for the elastic (vector)
wave equation are for a one-sided surface. Though they are
not given explicitly for the two-sided fault surface, they have
the same essential properties, which is that their solutions
consist not only of the wave function and its time derivative
on the surface but also the vector spatial derivatives of the
wave function (displacement). Our concern in this article is
with the significance of the spatial derivative terms on a two-
sided fault surface, which have been neglected heretofore.
We give the solution to the elastic wave equation in a more
useful form in the next section.

The familiar double-couple force equivalent (de Hoop,
1958, pp. 14–19; Knopoff and Gilbert, 1960; Maruyama,
1963; Burridge and Knopoff, 1964) is derivable directly from
the properties of the terms in the time derivatives of the dis-
placements. In this article we will show that the contribution
of the spatial derivative of slip is indeed zero in the far field
if the fault zone has zero thickness. However, it is nonzero if
the fault zone has finite thickness, and there is a strength-
weakening zone near an advancing crack tip. These hitherto
neglected terms radiate as a single couple. The single-couple
equivalent does not violate principles of Newtonian mechan-
ics because the torque imbalance in the single couple is coun-
terbalanced by rotations within the fault zone; the crack
therefore radiates torque waves, which are shear waves mani-
fested as a radiated rotational field at great distance.

Green’s Function

Stokes’ retarded solution (Stokes, 1849) for the Green’s
function Gij for homogeneous elasticity in the far field is
(Love, 1927, p. 305; Aki and Richards, 1980, p. 73)

4πρGij �
γiγj
α2R

δ
�
t � τ � R

α

�
� �δij � γiγj�

β2R
δ
�
t � τ � R

β

�
;

(1)

where the Green’s function Gij � Gij�x; t; ξ; τ� is the dis-
placement in the j direction at a distant point P�x� at time
t due to a unit impulse in the i direction at Q�ξ� on a fault
at time τ . ρ is the density of the medium, and α and β are the
P- and S-wave velocities, respectively. We adopt the conven-
tion that the first index is the component of the force at the
source, and the second is the component of the motion at
(great) distance R � jRj. The γis are the direction cosines of
the vector R � x � ξ from an element of the source Q�ξ� to
the point of observation P�x� (Fig. 1). We restrict the prob-
lem to the determination of the elastic wave radiation at P
due to slip on the internal surface Σ.

The stress Green’s function σijk derived from equa-
tion (1) is

σijk � λδjkGim;m � μ�Gij;k �Gik;j�;

where λ and μ are the Lamé elastic parameters; we have
dropped the arguments on σijk and Gij. From equation (1)

4πρσijk�x; t; ξ; τ� � � γi�λδjk � 2μγjγk�
α3R

_δ
�
t � τ � R

α

�

� μ�ψijγk � ψikγj�
β3R

_δ
�
t � τ � R

β

�
;

(2)

where ψij � δij � γiγj is a rotation operator, we use
γmγm � 1, ψimγm � 0, and where we have differentiated
only with respect to the second index in equation (1).

Integration of the Wave Equation

We consider sources only on the internal surface Σ. The
wave equation for elasticity in the absence of body forces is

τ jk;k � ρ �uj � 0: (3)

We solve (3) in a region V bounded by an extremely
large outer surface S and the two surfaces of the zone of
faulting, which is the internal surface Σ. The remoteness
of S means that motions generated at Σ never reach S in time
to influence the fields at P (Fig. 1). To solve (3) for slip on a
fault, we let Σ have two sheets, Σ� and Σ�, which are very
close to one another. In what follows, we allowΣ� and Σ� to
have a small but finite separation.

The Green’s function Gij�x; t; ξ; τ� in equation (1)
satisfies

Figure 1. An elastic solid, with volume V and closed external
and internal surfaces S and Σ, respectively. O is the origin of co-
ordinates, P�x� is a point of observation within V, Q�ξ� is a slipping
element on Σ, nk�ξ� is the outward drawn normal to surface Σ. The
inner surface Σ has two nearby sheets Σ� and Σ�.
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σijk;k � ρ �Gij � �δijδ�x � ξ�δ�t � τ�; (4)

where we have dropped the space and time arguments on σijk

and Gij; σijk � σijk�x; t; ξ; τ� is the stress tensor Green’s
function in equation (2). In the usual way, multiply equa-
tion (3) by Gij�x; t; ξ; τ� from equation (1), multiply equa-
tion (4) by uj�ξ; τ�, and subtract. It follows that

�τ jk;kGij � ujσijk;k� � ρ� �ujGij � uj �Gij�
� uiδ�x � ξ�δ�t � τ�: (5)

We integrate equation (5) over V�ξ�, �∞ < τ < ∞,
and apply Gauss’ theorem. We obtain

ui�x; t� �
Z ∞
�∞

dτ
Z
Σ
�ujσijk � τ jkGij�nkdΣ�ξ�; (6)

where uj � uj�ξ; τ�, τ jk � τ jk�ξ; τ�, and nk � nk�ξ� in the
integrand. Equation (6) is the representation theorem for sur-
face sources and is the point of departure for the remainder of
this article.

The Usual Problem

We consider the first integral of equation (6),

ui�x; t� �
Z ∞
�∞

dτ
Z
Σ
ujσijknkdΣ�ξ�: (7)

We substitute the stress tensor Green’s function σijk from
equation (2) into equation (7) and get the motion at P,

ui�x; t� � �
Z
Σ

γi�λδjk � 2μγjγk�nk
4πρα3R

∂uj�ξ; t � R
α�

∂t dΣ�ξ�

�
Z
Σ

μ�ψijγk � ψikγj�nk
4πρβ3R

∂uj�ξ; t � R
β�

∂t dΣ�ξ�:

(8)

We have used the identity

Z ∞
�∞

u�τ�_δ
�
t � τ � R

α

�
dτ � _u

�
t � R

α

�
:

The two terms in equation (8) have easily identifiable P- and
S-wave retardations; we consider them separately.

Let the two sheets, Σ� and Σ�, be separated by a small
distance ΔW. It is easy to demonstrate that

γ�i ≈ γ�i

�
1�O

�
ΔW

R

��

1

R� ≈ 1

R�

�
1�O

�
ΔW

R

��
;

where R� is the distance R between a point ξ� in the (upper)
surface Σ� and the point of observation x, which is therefore
a function of ξ�. R� is the same quantity for a point ξ� in the
(lower) surface Σ�. If we neglect all terms of order higher
than the zeroth in ΔW=R and notice that the two normals
point in opposite directions n�k � �n�k , we have

uPi �x; t� �
Z
Σ

γi�λδjk � 2μγjγk�nk
4πρα3R

∂huj�ξ; t � R
α�

∂t dΣ�ξ�

uSi �x; t� �
Z
Σ

μ�ψijγk � ψikγj�nk
4πρβ3R

∂huj�ξ; t � R
β�i

∂t dΣ�ξ�;

where we now integrate only over one surface Σ� of the two
and drop the superscript, and huji denotes the difference in
the quantity in brackets across the fault zone. Let

�
uj

�
ξ; t � R

c

��
� ej

�
u

�
ξ; t � R

c

��
;

where ej is the unit vector in the direction of slip, and hui is
the jump in u�ξ; t � R=c� across the fault zone,

�
u

�
ξ; t � R

c

��
� u

�
ξ�; t � R�

c

�
� u

�
ξ�; t � R�

c

�
:

Thus,

uPi �x; t� �
Z
Σ

γi�λδjk � 2μγjγk�nkej
4πρα3R

∂hu�ξ; t � R
α�i

∂t dΣ�ξ�

(9.1)

uSi �x; t� �
Z
Σ

μ�ψijγk � ψikγj�nkej
4πρβ3R

∂hu�ξ; t � R
β�i

∂t dΣ�ξ�:

(9.2)

It is easy to show that

�
u

�
ξ; t � R

c

��
≈Δu

�
ξ�; t � R�

c

�

� ∂u�ξ�; t � R�
c �

∂t
γ�k n

�
k

c
ΔW

�
1�O

�
ΔW

cTs

��
; (10)

where

Δu

�
ξ�; t � R�

c

�
� u

�
ξ�; t � R�

c

�
� u

�
ξ�; t � R�

c

�

is the usual jump in the displacement (dislocation) in u�ξ; t �
R=c� across the fault zone at the same instant of time
t � R�=c, and Ts is the rise time, c � α or β.
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It is worthy to note that the dislocation

Δu

�
ξ�; t � R�

c

�
≈D

and the slip velocity ∂u�ξ�; t � R�=c�=∂t is related to the
final slip D by

∂u
�
ξ�; t � R�

c

�

∂t ≈D=2

Ts

:

Thus,

�
u

�
ξ; t � R

c

��
≈Δu

�
ξ�; t � R�

c

��
1�O

�
ΔW

cTs

��
:

(11)

Because the direction of slip ej is perpendicular to the
normal fault surface nk for in-plane slip, nkek � 0. Hence,
equation (9) becomes

uPi �x; t� �
Z
Σ

β2γiγjejγknk
2πα3R

∂Δu�ξ; t � R
α�

∂t dΣ�ξ�; (12.1)

uSi �x; t� �
Z
Σ

�ψijγk � ψikγj�nkej
4πβR

∂Δu�ξ; t � R
β�

∂t dΣ�ξ�

(12.2)

for in-plane slip. Equation (12) holds for the case of fi-
nite thickness of fault zone ΔW if ΔW=R ≪ 1 and
ΔW=cTs ≪ 1, where c � α or β. Equation (12) is formally
in agreement with equation (14.6) of Aki and Richards
(1980, p. 802) for the case of zero fault width. From the con-
dition γ × γ � 0 and the orthogonality condition γiψij � 0,
we have that uPi and uSi are radially and transversely polar-
ized with P-wave and S-wave retardations respectively. The
radiation pattern γjejγknk in equation (12.1) is the expected
double-couple result for the P-wave radiation pattern.

For slip in the x1 direction and the normal to Σ in the
x3 direction, in spherical polar coordinates �R; θ;ϕ� centered
on the source,

e � �1; 0; 0�; n � �0; 0; 1�;
γ � �sin θ cosϕ; sin θ sinϕ; cos θ�;

measuring θ from the x3 direction and taking the �x1; x3�
plane as ϕ � 0. Thus,

uPR�x; t� �
Z
Σ

β2 sin 2θ cosϕ
4πα3R

∂Δu�ξ; t � R
α�

∂t dΣ�ξ�: (13.1)

We also calculate the amplitude of the S-wave term. The
S-wave terms in the θ and ϕ directions are

uSθ �x; t� �
Z
Σ

cos 2θ cosϕ
4πβR

∂Δu�ξ; t � R
β�

∂t dΣ�ξ�; (13.2)

uSϕ�x; t� � �
Z
Σ

cos θ sinϕ
4πβR

∂Δu�ξ; t � R
β�

∂t dΣ�ξ�: (13.3)

In the �x1; x3� plane (uSϕ � 0), uSθ is the expected quadrifoli-
ate radiation pattern rotated by 45° from the P-wave pattern
in the double-couple case.

This concludes our treatment of the usual term. This
part of the result, the double-couple force equivalent, holds
whether we have a strength-weakening zone or not because
the first term of equation (6) does not depend on the stresses.
In this case the far-field radiation is proportional to the slip
velocity on the fault and is the canonical result. The ratio of
the amplitudes of the P- and S-wave terms is �β=α�3 except
for the angular polarization coefficients.

The Strength-Weakening Zone

We return to the problem of the second term in the in-
tegral of equation (6). As remarked, this term is zero if
hτ jk�ξ; τ�i � τ jk�ξ�; τ� � τ jk�ξ�; τ� � 0. In this case, the
only term in the solution is the conventional double couple
of the preceding section. However, in a strength-weakening
zone (such as near the edge of an advancing crack), the stress
is time-dependent and nonzero because the stress drop must
vary between the critical shear stress and its final value at
the edge of the strength-weakening zone (Fig. 2). The terms
τ jknk are the tractions on the two surfaces; they are oppo-
sitely directed and each nonzero. Thus, the radiation from the
nucleation site and from the evolution of the crack at its edge

Figure 2. An elastic solid with volume V, closed external sur-
face S, and an internal surface Σ � Σ0 � Σε. The internal surface
consists of the dislocation surface Σ0 � Σ�

0 � Σ�
ε and the surface

of the strength-weakening zone (area in light gray) Σε � Σ�
ε � Σ�

ε .
ΔW is the thickness of the strength-weakening zone, O is the origin
of coordinates, P�x� is a point of observation within V, Q�ξ� is a
slipping element on Σε, nk�ξ� is the outward drawn normal to sur-
face Σ.
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must have a component that depends on the stress in these
regions. The mathematical problem is simpler than that of the
preceding section.

In this problem we start with

ui�x; t� �
Z ∞
�∞

dτ
Z
Σε

Gijτ jknkdΣ�ξ� (14)

from equation (6), where Σε is the surface of the strength-
weakening zone. From equation (1)

ui�x; t� �
Z ∞
�∞

dτ
Z
Σε

�
γiγj

4πρα2R
δ
�
t � τ � R

α

�

� �δij � γiγj�
4πρβ2R

δ
�
t � τ � R

β

��
τ jk�ξ; τ�nkdΣ�ξ�:

As before the P-wave term is radially polarized, and the
S-wave terms are orthogonally polarized to the Pwaves. The
two terms are

uPi �x; t� �
Z
Σε

γiγj
4πρα2R

τ jk

�
ξ; t � R

α

�
nkdΣ�ξ� (15.1)

uSi �x; t� �
Z
Σε

�δij � γiγj�
4πρβ2R

τ jk

�
ξ; t � R

β

�
nkdΣ�ξ�: (15.2)

Let τ jk�ξ; t�nk � ejT�ξ; t�, where ejT�ξ; t� is the traction
acting on the surface element dΣ having the outward drawn
unit normal nk, ej is the unit vector in the direction of the
traction. Thus,

uPi �x; t� �
Z
Σε

γiγjej
4πρα2R

T

�
ξ; t � R

α

�
dΣ�ξ� (16.1)

uSi �x; t� �
Z
Σε

�δij � γiγj�ej
4πρβ2R

T

�
ξ; t � R

β

�
dΣ�ξ�: (16.2)

We take the conditions just presented, that is, e �
�1; 0; 0�, n � �0; 0; 1�,γ � �sin θ cosϕ; sin θ sinϕ; cos θ�.
The P-wave term is

uPR�x; t� �
Z
Σε

sin θ cosϕ
4πρα2R

T

�
ξ; t � R

α

�
dΣ�ξ�: (17.1)

The S-wave terms are

uSθ �x; t� �
Z
Σε

cos θ cosϕ
4πρβ2R

T

�
ξ; t � R

β

�
dΣ�ξ�; (17.2)

uSϕ�x; t� � �
Z
Σε

sinϕ
4πρβ2R

T

�
ξ; t � R

β

�
dΣ�ξ�: (17.3)

The integrands are the radiation from a point force in the x1
direction.

In equation (15) if we take the contribution from the
internal surfaces Σε � Σ�

ε � Σ�
ε into account, the point

sources point in opposite directions, and we have a vector
point pointing in the ej direction plus a couple of oppositely
directed forces separated by a distance equal to the thickness
of the fault. This is a torque whose axis of rotation points is in
the e × n direction (i. e., a single couple).

Let τ jk�ξ; t�nk � ejT�ξ; t� and n�k � �n�k show as be-
fore. From equation (15) we have

uPi �x; t� � �
Z
Σε

γiγjej
4πρα2R

�
T

�
ξ; t � R

α

��
dΣ�ξ� (18.1)

uSi �x; t� � �
Z
Σε

�δij � γiγj�ej
4πρβ2R

�
T

�
ξ; t � R

β

��
dΣ�ξ�

(18.2)

as ΔW=R ≪ 1, where we now integrate over only the lower
surface and drop the superscript. In equation (18) hT�ξ; t �
R=c�i is the jump in T�ξ; t � R=c� across the fault zone of
thickness ΔW,

�
T

�
ξ; t � R

c

��
� T

�
ξ�; t � R�

c

�
� T

�
ξ�; t � R�

c

�
:

It is easy to show that

�
T

�
ξ; t � R

c

��
≈ΔT

�
ξ�; t � R�

c

�

� ∂T�ξ�; t � R�
c �

∂t
γ�k n

�
k

c
ΔW

�
1�O

�
ΔW

cT 0
s

��
; (19)

where

ΔT

�
ξ�; t � R�

c

�
� T

�
ξ�; t � R�

c

�
� T

�
ξ�; t � R�

c

�

is the stress dislocation, and T 0
s is the characteristic time for

stress change, c � α or β.
Although equations (10) and (19) are similar in form,

they are essentially quite different. Unlike equation (10),
where Δu�ξ�; t � R�=c� and ∂u�ξ�; t � R�=c�=∂t are
related due to the fact that Δu�ξ�; t � R�=c�≈D and
∂u�ξ�; t � R�=c�=∂t≈D=2Ts in equation (19) ΔT�ξ�; t�
R�=c� is the stress dislocation while ∂T�ξ�; t � R�=c�=∂t is
the time rate of stress; the latter quantities are not related as
they are in the displacement dislocation case. The stress dis-
location ΔT�ξ�; t � R�=c� may be zero or a certain finite
quantity, regardless of whether the thickness of the fault zone
is finite or zero. There is no similar relationship relating the
stress dislocation ΔT�ξ�; t � R�=c� with the time rate of
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stress ∂T�ξ�; t � R�=c�=∂t such as Δu�ξ�; t � R�=c�≈D
and ∂u�ξ�; t � R�=c�=∂t≈D=2Ts.

In the case ΔW=R ≪ 1, ΔW=cTs ≪ 1 and
ΔW=cT0

s ≪ 1, where c � α or β, we have

�
u

�
ξ; t � R

c

��
≈Δu

�
ξ�; t � R�

c

�
(20)

and

�
T

�
ξ; t � R

c

��
≈ΔT

�
ξ�; t � R�

c

�

� ∂T�ξ�; t � R�
c �

∂t
γ�k n

�
k

c
ΔW: (21)

The second term of the right-hand side of equation (21)
cannot be neglected although the second term of the right-
hand side of equation (10) can be in the case ofΔW=R ≪ 1,
ΔW=cTs ≪ 1, andΔW=cT0

s ≪ 1. The difference in the two
cases arises because the first term in equation (10) is nonzero
and persists as ΔW → 0, while in the case of equation (21),
the first term may be zero if the stress drop is continuous
across the fault zone.

The first term on the right-hand side of equation (21)
contributes the usual solution for a stress dislocation,

uPi �x; t� � �
Z
Σε

γiγjej
4πρα2R

ΔT

�
ξ; t � R

α

�
dΣ�ξ�; (22.1)

uSi �x; t� � �
Z
Σε

�δij � γiγj�ej
4πρβ2R

ΔT

�
ξ; t � R

β

�
dΣ�ξ�:

(22.2)

As in equation (16) this is the radiation from a point source
of strength of �ΔT pointing in the ej direction. The solu-
tion for the stress dislocation is zero if the traction on Σε

is continuous.
The second term of the right-hand side of equation (21)

is the solution for a single couple of oppositely directed,
time-dependent forces separated by a distance equal to the
thickness of the fault and is nonzero even if the traction is
continuous across the fault,

uPi �x; t� � �
Z
Σε

γiγjejγknk
4πρα3R

ΔW
∂T�ξ; t � R

α�
∂t dΣ�ξ�;

(23.1)

uSi �x; t� � �
Z
Σε

�δij � γiγj�ejγknk
4πρβ3R

ΔW
∂T�ξ; t � R

β�
∂t dΣ�ξ�;

(23.2)

where ΔW is the thickness of the strength-weakening zone,
�∂T=∂t is the time rate of stress-drop increase, and the in-

tegration takes place only over the lower surface of the
strength-weakening zone. Equation (23) holds for similar
conditions as equation (12) for the case of finite thickness
of fault zone ΔW if ΔW=R ≪ 1 and ΔW=cT 0

s ≪ 1, where
c � α or β.

For the same conditions listed in the previous
paragraph, that is, e � �1; 0; 0�, n � �0; 0; 1�, γ �
�sin θ cosϕ; sin θ sinϕ; cos θ�, the P-wave term is

uPR�x; t� � �
Z
Σε

sin 2θ cosϕ
8πρα3R

ΔW
∂T�ξ; t � R

α�
∂t dΣ�ξ�;

(24.1)

the S-wave terms in the θ and ϕ directions are

uSθ �x; t� � �
Z
Σε

cos2 θ cosϕ
4πρβ3R

ΔW
∂T�ξ; t � R

β�
∂t dΣ�ξ�;

(24.2)

uSϕ�x; t� �
Z
Σε

cos θ sinϕ
4πρβ3R

ΔW
∂T�ξ; t � R

β�
∂t dΣ�ξ�: (24.3)

This is the radiation from a single couple with time-
dependent forces in the �x1 direction and torque axis in
the x3 direction. The solution, which gives a time-dependent
single couple, is consistent with that obtained by Knopoff
and Gilbert (1960) for the problem of radiation from a fault
of finite thickness with stress drop across the fault.

The solution for the radiation from a strength-weakening
zone depends on the rate of stress drop. A comparison be-
tween equations (12) and (23) or (13) and (24) shows that the
expressions for the radiation from an element of the strength-
weakening zone are equivalent to the radiation from a sin-
gle couple with torque, while the radiation from an element
of slip is equivalent to the radiation from a double couple
without torque. They have opposite signs, expressing the fact
that the radiation from the strength-weakening zone arises
from the varying (decreasing) stress within the strength-
weakening zone, which is opposite to the direction of the
increasing stress drop before breakdown, while the radia-
tion from the completely fractured crack is a consequence
of the breakdown of the weakening zone and the increasing
dislocation.

Torque Waves

The radiation of a torque wave is part of the deformation
field, which results from the relative displacement (Bullen,
1953, pp. 13–14). Consider an element of solid material
within which displacements u�x� have occurred. Let the par-
ticle initially at position x be moved to position x� u�x�.
The displacement of a point at position x� δx is

ui�x� δx�≈ ui�x� �
∂ui�x�
∂xj δxj; (25)

1096 L. Knopoff and Y.-T. Chen



where δx is infinitesimal and where the partial deriva-
tives are evaluated at x. By adding and subtracting
�1=2��∂uj�x�=∂xi�δxj to equation (25), the displacement
of the point at x� δx can be separated into three parts

ui�x� δx�≈ ui�x� � eijδxj � ωijδxj; (26)

where eij is the symmetric strain tensor, and ωij is the anti-
symmetric rotation tensor

eij �
1

2

�∂uj
∂xi �

∂ui
∂xj

�
;ωij �

1

2

�∂uj
∂xi �

∂ui
∂xj

�
:

The rotation tensor can be written as

�ωijδxj � �Ω × δx�i; (27.1)

Ω � 1

2
∇ × u; (27.2)

where Ω is the rotation vector.
The elastic wave equation (3) for homogeneous elas-

ticity is

�λ� 2μ�∇�∇ · u� � μ∇ × �∇ × u� � ρ �u � f (28)

for which equation (6) is the solution. We take the curl of
equation (28) and get

μ∇2Ω � ρ �Ω � 1

2
∇ × f:

Hence, the rotations are S waves and can be expected to
be orthogonal to both the P- and, via equation (27.2), the
S-wave components of the motion.

Equation (26) shows that in an elastic solid, the defor-
mation in the vicinity of x consists of three parts. The first
part, which is given by the first term of equation (26) (ui�x�),
is equal to the displacement of x and thus, corresponds to a
pure translation of matter near x, which produces no defor-
mation or rotation. The second part, represented by the eij
term, is the true elastic distortion resulting from the differ-
ential motion within the body. The third part, represented
by the Ω term, corresponds to the pure rotation of a small
volume element containing the point x about an axis paral-
lel to Ω. This is a local rotation and should not be confused
with the rigid rotation of the whole body, which has been
excluded from u ab initio or with the microscopic rotational
motion in which a typical particle is considered not as a
material point but as an infinitesimal rigid body (Nowacki,
1986, p. 9).

In the case of in-plane slip the uPi �x; t� term in the far
field of equation (12.1) is irrotational and makes no contri-
bution to rotational motion, while the uSi �x; t� term of equa-
tion (12.2) is rotational and contributes rotational waves or
torque-waves

Ωi�x; t� � �
Z
Σ

εiklγjγk�njel � ejnl�
8πβ2R

∂2Δu�ξ; t � R
β�

∂t2 dΣ�ξ�;

(29)

where εikl is the usual permutation symbol.
From equation (29) the far-field rotational waves or

torque waves for in-plane slip depend on the slip acceleration
on the fault. From the orthogonality condition that γiΩi � 0

and equation (29), we have that the rotation is orthogonal to
both the P-wave motions uPi �x; t� and the S-wave motions
uSi �x; t� and travels with S-wave velocity.

For the coordinate system just presented, that is, e �
�1; 0; 0�, n � �0; 0; 1�, γ � �sin θ cosϕ; sin θ sinϕ; cos θ�,
the rotational or torque waves from a double-couple
source are

ΩR�x; t� � 0; (30.1)

Ωθ�x; t� � �
Z
Σ

cos θ sinϕ
8πβ2R

∂2Δu�ξ; t � R
β�

∂t2 dΣ�ξ�; (30.2)

Ωϕ�x; t� � �
Z
Σ

cos 2θ cosϕ
8πβ2R

∂2Δu�ξ; t � R
β�

∂t2 dΣ�ξ�:

(30.3)

Equation (30) is in agreement with the far-field term of
equation (30) obtained by Cochard et al. (2006).

As in the case of in-plane slip (i.e., the case of a double-
couple source), in the case of time-dependent stress drop in
the strength-weakening zone, which is the case of a single
couple, the uPi �x; t� term expressed by equation (23.1) makes
no contribution in the far field to rotational motions. The
uSi �x; t� term expressed in (23.2) contributes rotational waves

Ωi�x; t� �
Z
Σε

εiklγkelγjnj
8πβ2R

ΔW
∂2T�ξ; t � R

β�
∂t2 dΣ�ξ�: (31)

The far-field rotational waves or torque waves from
the stress drop in the strength-weakening zone depend on
the stress acceleration ∂2T=∂t2 in the fault plane. In this
case of strength weakening from the orthogonality condition
γiΩi � 0 and equation (31), we have that Ωi is orthogonal
to both the P-wave motions uPi �x; t� and S-wave motions
uSi �x; t� and with S-wave retardation in the far field.

Under the same conditions presented in the
last paragraph e � �1; 0; 0�, n � �0; 0; 1�, γ �
�sin θ cosϕ; sin θ sinϕ; cos θ�, the rotation from the
single-couple source is

ΩR�x; t� � 0; (32.1)
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Ωθ�x; t� �
Z
Σε

cos θ sinϕ
8πβ2R

ΔW
∂2T�ξ; t � R

β�
∂t2 dΣ�ξ�; (32.2)

Ωϕ�x; t� �
Z
Σε

cos2 θ cosϕ
8πβ2R

ΔW
∂2T�ξ; t � R

β�
∂t2 dΣ�ξ�:

(32.3)

Seismic Effects of Finite Fault Thickness

The presence of a single-couple source is not in conflict
with the usual interpretation of double-couple force equiva-
lents: the double couple is the lowest order combination of
forces, which has no net force and no torque. How then can
we have a single-couple solution in this case? The answer
comes from an appreciation of the fact that our fault has
a finite thickness and that the relaxation of static torques
within the fault zone is exactly compensated by the radia-
tion of torque waves from the fault. The double-couple solu-
tion is the appropriate solution if the fault has zero thickness
(Fig. 3). If the fault zone has zero thickness, the torque,
which is equal to the product of the traction and fault thick-
ness, is zero. During an earthquake event, a transition zone,
also known as a breakdown or cohesive zone, is found at the
edge of the crack. Within this zone the medium undergoes a
gradual transition from the continuum state of static elasticity

to the nonlinear ruptured state. The stress across the fault
plane is related to the slip by the constitutive relation, as
shown schematically in Figure 4 (Ohnaka and Yamashita,
1989; Ohnaka et al. (1997); Venkataraman and Kanamori,
2004). In this figure, σ0 is the initial stress or prestress
(i.e., the stress before the earthquake or the stress in the sur-
rounding medium). σp is the yield stress or peak strength
(i.e., the upper limit of static frictional stress). At this level
instantaneous instability begins, and strength weakening oc-
curs; σd is the dynamic frictional stress, and σ1 is the final or
static frictional stress.

With this constitutive relation we can analyze the mo-
ment release in dynamic earthquake ruptures. Let us assume
that a dynamically ruptured fault propagates with variable
rupture velocity vf in the x1 direction (see Fig. 5c). In the
elastic solid, dynamical rupture will initiate at a point where
the strength excess is least; after initiation a stress concen-
tration is located at the crack tip. The shear stress on the fault
plane (x3 � 0) far ahead of the crack tip is the initial stress
σ0. The shear stress σ rises from the initial stress σ0 to the
yield stress or peak strength σp and then decreases to the
dynamic frictional stress σd (Fig. 5a). During the slip-
weakening part of the process, the shear stress drops from
σp to the dynamical frictional stress σd with continuing, in-
creasing slip. The critical slip Dc marks the transition from
the decreasing stress to the steady, dynamical friction. Slip
continues to the final slip D resisted by the dynamic sliding
friction σd where healing begins (Fig. 5b). When the slip
stops the stress on the newly locked portion of the fault con-
tinues to vary (increase) with time, ultimately approaching
the final (static) frictional stress σ1. σ1 may be greater than,
equal to, or smaller than σd, but in Figures 4 and 5 only the
case σ1 > σd is shown for simplicity.

Figure 3. Radiation from a strength-weakening zone of a finite
thickness ofΔW is equivalent to a single couple.� _T is the time rate
of increase of stress drop. The axis of rotation for the torque exerted
by � _T points in the �e × n direction (x2 direction in the present
example). This radiation of torque wave (small circles rotated coun-
terclockwise outside the strength-weakening zone) from the fault
exactly compensates the relaxation of torques within the fault and
points in the e × n direction (negative x2 direction in the present
example) as schematically shown by the single couple and the small
circle rotated counterclockwise within the strength-weakening
zone. The figure to the right represents the spherical polar coordi-
nate system centered at a slipping element Q�ξ� onΣε (not to scale).
P is a point of observation, P0 is the projection of P onto the (x1, x2)
plane. For explanation of the other symbols, see text. The net force,
which is the sum of the tractions T, may be zero, but nevertheless
they exert a torque because of the finite separation.

Figure 4. Constitutive relation of shear stress across the fault
plane versus slip (after Ohnaka and Yamashita, 1989; Ohnaka et al.,
1997; Venkataraman and Kanamori, 2004).
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In contrast to Figure 5, which presented a picture in
space of the variations in stress, Figure 6 illustrates schemati-
cally the stress change with time at a representative point on
the fault plane (Yamashita, 1976) as the stress-change pattern
associated with crack growth moves across the point. At time
t0 rupture initiates at the hypocenter on the fault plane. As
rupture progresses from the point of initiation to this point,
the stress begins to increase from σ0 to peak stress σp at time
tp. As slip increases from zero to Dc, strength-weakening
occurs, and stress drops from σp to the dynamic frictional
stress σd at time t0s. For slip greater than Dc, the stress on
the fault plane is σd until the slip comes to a stop at time
ts. Dc is the breakdown slip or critical slip-weakening dis-
tance. After the slip stops, the stress increases to the final
stress σ1 at time t1. Our concern in this article has been with
the time-dependent stress during the slip-weakening process.
In addition to the increase in slip, which accompanies the
stress decrease in the early stages of fracturing, there is an
increase of stress (as noted in Fig. 6), which takes place

in the example of the figure after the slip stops. If the increase
in stress takes place before slip stops completely, there will
be a contribution to the single-component term from the
stopping phase. In this article we consider only the first
of the two episodes of single-couple radiation and assume
that strength hardening takes place only after all slip has been
completed and is nonradiative.

We do not enter into present day arguments concerning
the cause of the stoppage of slip in self-healing pulses,
whether it is due to an increase of sliding friction as slip
decelerates (Heaton, 1990; Cochard and Madariaga, 1996;
Zheng and Rice, 1998) or due to an encounter of the crack
with an extended strong region in the fault surface, which is a
region of high strength excess (Mikumo andMiyatake, 1978;
Day, 1982; Wald and Heaton, 1994), and which causes the
increase in the friction in Figure 6. As in Figures 4 and 5,
only the case of σ1 > σd is shown in Figure 6. Δσb � σp �
σd is the effective shear stress. Δσd � σ0 � σd is the dy-
namic stress drop, and Δσ � σ0 � σ1 is the static stress
drop. Thus, the breakdown zone is a zone within which
the stress changes dramatically.

On a ruptured portion of the fault of area ΔA, the far-
field radiation due to the increase of the stress drop is ap-
proximately proportional to the time rate of torque moment
(equation 23)

Δ _Mt � ΔWΔ _σΔA; (33)

whereΔW is the thickness of the breakdown zone,Δ _σ is the
time rate of increase of effective shear stress Δσ�t� (i.e., the
rate of increase of the stress drop),

Δσ�t� � σp � σ�t� (34)

σ�t� is the shear stress as a function of time. From the inte-
gration of Δ _Mt over the complete time of fracture and the
entire fractured area, we get the total torque moment release

Figure 5. Distribution of stress (a) and slip (b) within the break-
down zone for a dynamically ruptured fault (c). Area in light gray
��Xc ≤ x1 ≤ 0� represents the breakdown zone, and area in dark
gray �x1 ≤ �L� represents the healing portion of the fault (after
Heaton, 1990; Rice et al., 2005). For explanations of other symbols,
see text. The patterns in this figure travel rightward.

Figure 6. Time dependence of stress at a representative point
on the fault plane. For explanation of the symbols, see text (after
Yamashita, 1976).
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Mt � ΔWΔσbA; (35)

where

Δσb � σp � σd (36)

is the effective shear stress, and A is the area of the total rup-
tured plane of the fault.

The far-field radiation from the beginning of slip to final
slip D for the ruptured portion of the fault of area ΔA is pro-
portional to the time rate of change of seismic moment

Δ _M0 � μΔ _uΔA: (37)

If we also integrateΔ _M0 over the entire time interval of rup-
ture and the entire rupture surface, we obtain the usual repre-
sentation for scalar seismic moment

M0 � μDA; (38)

where M0 is the scalar seismic moment due to a dislocation
source of final slip D.

The dimensionless ratio k of the torque moment rate in
the radiation from the decrease of stress in the breakdown
process with an effective shear stress change of Δσb, thick-
ness of breakdown zone ofΔW to the usual seismic moment
rate from the same dislocation source with rigidity μ, is

k � Δ _Mt

Δ _M0

: (39)

To estimate the torque moment rate and seismic moment
rate, we find from equations (33) and (37)

Δ _Mt ≈ΔWΔσbΔA

T 0
s

; Δ _M0 ≈ μDΔA

Ts

;

where T 0
s � t0s � tp is the characteristic time for stress

change (i.e., time for completing the breakdown), and Ts �
ts � tp is the usual rise time (i.e., the time for the completion
of slip at a point on the fault). We estimate Ts and T 0

s roughly
by Ts ≈D=vf, T 0

s ≈Dc=vf, where vf is the advancing ve-
locity of the crack tip (i.e., the rupture velocity). Thus,

k � ΔWΔσb

μDc

; (40)

where we have used Ts=T
0
s ≈D=Dc by virtue of Ts ≈D=vf

and T 0
s ≈Dc=vf.

The effective shear stress Δσb has several estimates.
According to an early estimate by Kanamori (1994), Δσb ≈
2 to 20 MPa. The estimate of Ohnaka (2003) is Δσb ≈ 1

to 100 MPa. Recently, Rice et al. (2005) gave Δσb ≈
100 MPa. In our numerical estimate, we adopt

• Dc ≈ 0:5 m (Mikumo and Yagi, 2003; Fukuyama and Mi-
kumo, 2007).

• ΔW ≈ 200 m (Li and Leary, 1990; Li et al., 1990; Li and
Vidale, 1996; Li et al., 1997).

• Δσb ≈ 60 MPa (Kanamori, 1994; Ohnaka, 2003; Rice
et al., 2005).

• μ≈ 3 × 104 MPa.

Substitution of these values into equation (40) yields
k≈ 4=5. Field investigations from some great earthquakes
show that the width of the fault zone or the thickness of
the strength-weakening zone ΔW ranges from several hun-
dred meters to several kilometers. In view of these comments
the k value, at least for some larger earthquakes, may be even
larger than the present estimate.

The total moment from the torque moment Mt and seis-
mic moment M0 for the entire rupture process and the entire
ruptured area is equivalent to a dislocation source with seis-
mic moment

M0
0 �

1

2
Mt �M0; (41)

where the factor of 1=2 is introduced because the radiation
from a single couple with unit moment is half the radiation of
a double couple with the same amount of seismic moment for
each pair of couples.

If the contribution to the total moment from the torque
moment is not taken into account, the seismic moment due to
a dislocation source is estimated by equation (38). Thus, the
ratio of seismic moment estimated from far-field radiation,
taking into account the contribution from the torque moment
to that simply from the dislocation source, is

M0
0

M0

� 1� Mt

2M0

≈ 1� k

2
·
Dc

D
: (42)

The ratios M0
0=M0 are listed in Table 1 for some represen-

tative values of the final slip D for the case k � 0:8. The
overestimate of the total moment magnitude is only about
�2=3� lg�M0

0=M0� � �2=3� lg�1:2�≈ 0:06 in the most opti-
mistic case of importance of the torque moment. The influ-
ence is not pronounced on a logarithmic scale.

The results obtained here have two implications. The
first is that in usual waveform analysis, the use of the dislo-
cation model alone would overestimate seismic moment and
consequently the final slip D if the contribution to the far-
field radiation from the torque moment is not taken into ac-
count. The overestimate may be as much as a factor of 1.2 to

Table 1
Ratios of M0

0=M0

D (m) D=Dc M0
0=M0

1 2 1.20
2 4 1.10
3 6 1.07
4 8 1.05
5 10 1.04
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1.04 as D ranges from 1 to 5 m. These results may explain
the discrepancies between seismic moments or final slips es-
timated from usual waveform analysis using the dislocation
model alone and field observations or geodetic measure-
ments. The second is that in usual waveform analysis, the
use of the dislocation model alone would introduce an extra
seismic moment rate and consequently an extra slip rate of as
much as a factor of k=2≈ 0:4 of the usual seismic moment
rate and the usual slip rate during the time interval for com-
pletion of the breakdown process if the contribution to the
far-field radiation from the torque moment is not taken into
account. This will in turn influence the calculation of seismic
energy radiated from earthquake events.

Discussion and Conclusions

We have reexamined the two canons of the seismologi-
cal literature that elastic displacements in the far-field are
proportional to slip velocities on the dynamical fault surface,
and that dynamical in-plane slip on an earthquake fault has a
double-couple body force equivalent. Taking into account
the fact that if faulting occurs on a fault of finite thickness
and if a strength-weakening zone exists near the advancing
crack tip, we have shown that in addition to the usual double-
couple term, there is a single-couple term in the body force
equivalence in the far-field displacement, which is pro-
portional to the time rate of increase of stress drop. We have
shown that the single-couple equivalent does not violate
principles of Newtonian mechanics because the torque im-
balance in the single couple is counterbalanced by rota-
tions within the fault zone. The crack therefore radiates
torque waves.

We have estimated the ratio of the torque moment rate
radiated during the breakdown process to the usual seismic
moment rate from the same rupturing fault and the ratio of
seismic moment released with contribution from the torque
moment released to that simply from the dislocation source.
These results imply that if the contribution to the far-field
radiation from the torque moment is not taken into account
in usual waveform analysis, the use of the dislocation model
alone would overestimate seismic moment and consequen-
tially the final slip. It would introduce an extra seismic mo-
ment rate and consequentially an extra slip rate. This will in
turn affect calculations of seismic energy radiated from earth-
quake events. We have also shown that frictional torques
accumulated in a fault zone of finite width during an inter-
earthquake interval are relaxed through the development of
torque or rotation waves radiated as shear waves during the
time-dependent, frictional, or stress-weakening (relaxation)
part of the fracture process near the tips of advancing cracks.
Torque waves are small during the more familiar frictional
sliding interval, where the dynamical friction remains rela-
tively constant.

The relaxation of torques within the fault may play an
important role in driving the rotation of material in the fault
zone and dramatically changing the dynamic friction in the

fault zone, and the radiation of torque waves from an ad-
vancing strength-weakening zone before the occurrence of
a large earthquake may give a clue to account for rotational
phenomena, which have been reported in some historical
documents (Galitzin, 1912, p. 75; Bullen, 1953, pp. 135,
251; Richter, 1958, p. 213; Bouchon and Aki, 1982; Takeo
and Ito, 1997; Takeo, 1998; Teisseyre et al., 2003; Igel
et al., 2007).
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