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Tutorial on New Developments in the Physics of Rotational Motions

by Roman Teisseyre

Abstract We present a linear continuum theory incorporating asymmetric stress
fields as well as symmetric strains and antisymmetric rotations. We discuss the related
constitutive laws and balance equations. In this theory, the motion equation related to
the balance of the antisymmetric part of stresses replaces that for the stress moments.
Our theory proves that the rotation waves may exist even in a homogeneous elastic
continuum.

Different kinds of extreme deformations are considered. The wave solutions, in-
cluding the coaction of the rotation and twist fields, are presented and discussed. The
dislocation density—stress relations are derived with the help of the symmetric and
antisymmetric parts of stresses. The synchronization solution, rotation, and twist,
shifted in phase by 7/2, are presented for a material in an advanced deformation state
with granulation and microcracking. Some examples of the spin and twist motion

records are reported that confirm this synchronization hypothesis.

Introduction

The need for a new, reliable, and relatively simple ap-
proach to continuum theory comes from many aspects,
different arguments, and many insufficiencies of the classi-
cal theories, notably the classical elasticity. Some problems
found temporary solutions with the help of the nonlinear re-
lations introduced; we may mention, for example, the soliton
waves, important in ocean dynamics but also recently ap-
pearing in seismology (Mikhailov and Nikolaevskii, 2000;
Bykov, 2006; Majewski, 2006; Bykov, 2008). However, our
intention is to remain basically in the linear domain as we
believe that a possible need for a nonlinear behavior shall
be fulfilled in an extension of the adequate linear theory with
the help of the Riemannian or nonRiemannian space geome-
try (e.g., Teisseyre, 1995).

The classical elasticity almost perfectly describes the
small deformations, but it has many well-recognized insuffi-
ciencies (for instance, the angular motions are not coherently
incorporated in it). Many attempts to improve the theory
should be mentioned: first of all, the Cosserat brothers’
theory of elasticity with displacements and rotations (see
Cosserat [1909] and a number of articles related to the mi-
cropolar and micromorphic elastic theories, e.g., Eringen
and Suhubi, 1964; Mindlin, 1965; Nowacki, 1986; for an
advanced review, see Eringen, 1999). The micropolar and
micromorphic theories constitute a very powerful tool for de-
scription of many complicated material problems (see Jones,
1973); however, these theories sometimes seem to be too
complicated and difficult to manage for nonspecialists and
therefore are not in common use in the seismological studies
(for some examples of seismological application, see Teis-
seyre, 1973, 1974).

Some inadequacies and unsolved problems faced by the
existing classical theories are as follows:

e In the classical elastic continuum theory, the balance of
angular momentum holds when the stresses are assumed
to be symmetric, while the angular motions can be intro-
duced only artificially with the help of a characteristic
length element and a reference rotation point; this problem
is solved in the micromorphic theories.

Searching for fault-slip solutions, we may rely on classical
elasticity but only with the friction constitutive laws intro-
duced additionally in accordance with the experimental
data; the corresponding elastodynamic solutions describe
slip propagation along a fault, include the friction effects,
and solve some problems of seismic radiation.
Transition to advanced deformation states of continuum,
like plastic flow, can only be accomplished by changing
the constitutive laws; however, a more serious problem
is related to the description of granulation and fragmenta-
tion of material, which would need an inclusion of rotation
processes in the frame of a coherent theory with asym-
metric fields.

Fracture geometry related to earthquake processes usually
reveals an asymmetric pattern with the main slip plane; we
may also believe that the premonitory processes as de-
scribed by deformations in a continuum with defects de-
velop in an asymmetric way, and such an approach cannot
be included in the classical theory.

Solution for an edge dislocation presents some asymmetry
in relation to its strain components in the plane perpendic-
ular to the dislocation line (wedge line); for a continuous
distribution of dislocations this fact should result in con-
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frontation with the symmetry of shears in an asymmetry of
stresses.

¢ Direct differential relation between the density of edge dis-
locations and the related stresses cannot be found in the
frame of the classical symmetric continuum.

These problems and the consideration on fundamental
point deformations as discussed by Teisseyre and Gorski
(2009) can be the basis of a search for a linear continuum
theory with asymmetric stresses. Moreover, we believe that
separate balance laws exist for all the discussed point mo-
tions; some solutions might reveal a mutual interrelation be-
tween these motions.

Our aim was to construct a new, relatively simple the-
oretical approach in which the stress moments would be
replaced by the antisymmetric part of stresses, and the intro-
duced displacement and rotation motions could be shifted in
phases when originated by the independent but correlated
processes.

For the antisymmetric part of stresses and related rota-
tion field, we will need to introduce a proper constitutive law;
we will call it Shimbo law as we have followed Shimbo’s
(1975, 1995) consideration on the friction processes and ro-
tation of grains. Of course, the equivalent constitutive laws
have already been introduced in the micromorphic theories
and in the Kroner approach to the continuum theory with the
self-fields and related internal nuclei (Kroner, 1981). How-
ever, the existing theories either do not include all the point
motions, or in an opposite case, assume a complete indepen-
dence of these motions.

Thus, we need a theory incorporating the separate bal-
ance relations and constitutive laws for all the point deforma-
tions, which will permit us to arrive at different solutions
together with those presenting mutual interrelation between
the fields as well as a possible phase shift between the
motions.

The existing technical facilities record the spin mo-
tion (Cochard et al., 2006), but we shall be aware that the
recorded rotations come from different source processes
related to the independent or mutually related translations
and rotations in their origin sites. We may also note that in
the course of microfracturing under confining load, we are
dealing with a significant rotation release process with the
spin motion distinctly overpassing the displacement motions
when observed at a very near field. For the strong near-
ground motions, which include a tilting component, the rota-
tion of displacements may be very important. Further on, we
may even observe a magnification of horizontal rotation of
displacements and an appearance of the rocking—tilting com-
ponent of displacement rotation caused by the geometry of
constructions, especially high buildings.

Symbols and Notation

The tensor notation and the summation convention for
the repeating indexes are primarily used. For example, A; B,
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means »_,A;Bj. The symmetric and antisymmetric parts of
asymmetric tensors are designated by brackets, (..) and [..],
for indexes; for example, S = Su;) while Sjy = =Sy
The curl operator is expressed with the help of the fully anti-
symmetric tensor €,,;, equal, respectively, to 1 and —1 for the
even and odd permutation of indexes or to 0 when any repe-
tition of indexes would occur, for example, for rotation of
displacements, curl u, we may write €, g—)’j; (with the sum-
mation over the repeating indexes). The time derivative is
designated by an overhead dot.

Asymmetric Continuum—Standard Theory

We outline in the following section the development of
standard asymmetric theory presenting the motion equations
for all the fundamental point deformations (see Teisseyre
and Gorski, 2007) and the related constitutive laws for the
related fields.

Taking into account the arguments presented in the for-
mer section and the insufficiencies of the classical elasticity,
we assume asymmetry of stresses; and therefore, our theory
shall include the constitutive laws and motion equations for
the symmetric and asymmetric fields; besides the asymmet-
ric stresses, S;;, we introduce the asymmetric deformation,
Dy, containing the symmetric strain, E;;, and antisymmetric
rotation, wy;

Skt = Sy + S
Ey = Eu»

Diy = Ejy + wys
(D

Wit = Wik

We have two groups of relations, those for symmetric and
antisymmetric fields.

We introduce a new parameter, the phase index XO,
which combines the deformation fields, D;, = Ey; + wi,
with the derivatives of displacement motions in an indepen-
dent way, D;; = EQ, + Xwgl, and we get

1 (0u; Ou
Ey = E}, ZE(_Z+—k)’

(9xk 6.X1 (2)
1 (0u; Ou
wkl:XOW(’zl:XOE(a_x,i_a_xl;)’ IX°] =1,

where the classical elasticity is obtained for x° = 0.
For the internal energy stored in such a medium,
we obtain

E = StoEs + SpgsWhs- 3)

In a more general case, we may put

1 (0u; Ou 1 (0u; Ou
_ ol (Ou, Ou _ ol (0w ou
Ekl = 2(3xk+ 3xl)’ Wil X 2(8)(]( (‘3x1)’

“4)
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0

where for particular values of indexes e” and XO, we

will have:

e For ¢ = 0, we define a granular—crushed medium filled
with rigid spherical grains with a friction interaction; when
applying a torque load on its surface boundary (e.g., a cy-
lindrical one), we will obtain only some angular defor-
mation, and the torque energy stored will be given as
E= S[ks]wks'

* For ¢” = 1 and for x° from x* = 0to |x°| = 1, we define
solid continuum with friction and different kinds of inter-
nal defects (dislocation densities) and with partly granu-
lated material.

We may also consider a continuum related not only to
displacements but also to other physical fields (e.g., ther-
mal, electric, and magnetic, properly arranged in their inter-
action roles); then for the asymmetric deformation tensor,
Dix = D) + Dy, we can introduce instead of Dy =
Ey 4wy = EQ, + Xw(,gl (equations 1 and 2), an expres-
sion containing the influence of other physical fields on
deformations

1 814[ Buk
D =FE, = -|—+-EL I,
(kD) w=es (8xk + Bxl) + el )
1 aul 3uk
Dy = wy = x°= [ oL - 2% I,
k] = Wi = X735 ( %, Bx,) + X1y

where I; = I ;) + Iy represents an ensemble of the inter-
active fields while an ensemble of the interaction constants, e
and y, may include the possible phase shift corrections re-
lated to the source processes.

Further on, we will concentrate only on the displacement
and rotation counterparts leading to the asymmetric stress
tensor as given in equations (1) and (2).

We shall note that the indexes introduced relate mainly
to the phase shift between the strain and rotation fields not
considered in any former theory; the different deformations
are related to the mutual correlation between the strain and
rotation fields’ constants. These additional indexes are not
additional material constants but determine the families of
solutions or, in other words, the types of the considered de-
formations and processes. Our attempt probably represents
the simplest approach; it seems more logical to first link
the interactive fields with deformation tensor and then the
asymmetric deformation with stresses because the intro-
duced ensemble of constants may also represent the phase
delay between the deformation caused by mechanical load
and that related to the effects of interactive fields.

In Teisseyre and Goérski (2009) we have noted that
any rotation motion can be expressed by displacements;
hence, outside the source we may get two independent yet
sometimes correlated displacement fields, U = u + u, with
it = Pcurlw (I being the characteristic Cosserat length)
emitted in the source as a rotation with some phase shift
X' = +i.

R. Teisseyre

Shear Field: Twist Pseudovector

A shear field is given by the deviatoric part of strains

1 1
ER =Ey— 3Ok Ej = 3 ik

6
ED = "Eb =0. ©

We may present it either in the form related to the main shear
axes, (E?,, ED,, EL), or in the form related only to the off-
diagonal components. However, we may note that the trans-
formation from the deviatoric axial tensor to the off-diagonal
system is not unique because in the latter we have only
two independent components (Wiszniowski and Teisseyre,
2008). The situation considerably simplifies at the ground
surface, x3 = 0 with the condition E;, = EY = 0, a partic-
ular transformation from an axial deviatoric tensor

EP 0 0
0 —-E2 0
0 0 0

leads directly to the equivalent off-diagonal form

0 EP 0
EP 0 0
0 0 o

In general using the off-diagonal system, we can define
the twist pseudovector,

(@) = (ED, E5) EDy)  or  Ef = e (7

Note that the twist vector is related to the string—string
point deformation (see Teisseyre and Gorski, 2009); the de-
fined twist motion, &,, means the rotational oscillation of the
off-diagonal shear axes of the deviatoric tensor and the am-
plitude related to it (due to disturbances of an external load
by the inner microfracture processes and defects formed) as
schematically shown in Figure 1.

However, we can present this pseudovector, @, as incor-
porated into the invariant tensor form with the help of the
Dirac tensors. The invariant Dirac tensors, «“, are related
to the coordinate system in such a way that their individual
shapes are preserved in any coordinate system. The Dirac
tensors fulfill the conditions

I /
57+ =7,

where the space-time metric is

1 00 0
w0 10 o
T"=10 01 o0

00 0 —I
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Figure 1.
side arrows) and the amplitude as caused by the inner microfracture
processes and defects (transformation of a square into a rhombus).

Twist motions: shear axes’ oscillation (marked by two

Both the symmetric and antisymmetric Dirac tensors exist.
We may invariantly present the twist pseudovector with
the help of the antisymmetric Dirac tensor. We make this
choice as it also assures the invariant form of the related con-
servation law.

We define the complex rotation tensor,
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0 0 1
R 0 -1 0|
1 0
-1 0 0
i 0 1 0]
. 0 0 1)
-1 0 0 0
L0 —1 0 0]
0 1 0
st 0
0 00 -1
0 0 0

The definition, equation (8), serves for both the rotation and
twist vectors and makes it possible to present the invariant
conservation equations for the two fields. The related motion
equations can be expressed by the standard conservation law
in 4D and can be applied to the complex rotation motion de-
fined in equation (8),

s _,
= or &,k

Ox"

INw + iwy) 0w, + iw,) _ 0
Ox* ivot 7
(10)

where x7 = (x!, %%, x3, x*); x* = iVt; and where V means a
propagation velocity related to these fields.

0 (w3 +iw3)  —(wy + i) —(wy + i)
_ | —(ws + i) 0 (wy + i) —(wp + i)
Qaﬁ = Wqup + Wap = (w2 + l(:)2) _(wl + 15)1) 0 _(w3 + 1&3) (8)
(w1 + l(:)l) ((UQ + l(:JZ) (w3 + 1&3) O

which includes the rotation and twist fields. Its invariant form
can be built in the following way:

Qaﬂ = Wap + i&ja;[)’
= iy (w; + @) + iV (W, + i&y) + P (ws + D),
)

where we have introduced the Dirac tensors,

The real and imaginary parts become quite similar in
form to the Maxwell equations (provided that velocity V' is
transformed according to relativistic rules for the sum of
velocities),

) Ow, 0B, _ o, Ow,
Eoxs  vor K xS

=0. 10a
Vot (102)

According to these equations the rotation and twist
motions appear mutually connected; any rotation motion in-
duces the twist-shear response with related displacements
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and vice versa. This is an important statement valid even for
an advanced deformation state of continuum; thus, we may
assume it valid before and after a macroscopic fracture.
However, the experimental data mentioned later indicate that
such mutual interactions are also observed in some detected
wavelets originated at the fracture time domain.

The related wave fields derived from equation (10a) are
as follows:

azwk 82wk _
oxoxs  V2orr

Po 0,
—_—————=0. 11
Ox*Ox*  V20r* 0. (b

Constitutive and Balance Laws for
Asymmetric Deformations

Strains

First, considering the symmetric part of the deformation
field, D) = Ej (equation 1), we will assume the classical
constitutive law,

Sy = MNowEg + 2pEy (12)

but there is no problem to include into it the appropriate lin-
ear deviations related to viscoplastic effects.

From the classical motion equation for the symmetric
part of stresses

0 0?

8—xks(kl) :Pwuz"'Fz (13)

with the following scalar and vector potentials

0 0
u = 128—)(:1(,0 + 12611758717[)3’

' (14)
F, = l2i<1> + e <i\1/<
! axl Ips axp K
we have
82
(A+2p) p=pp+ P,
axkaxk
2 . (15)
— ). =pp, + U
l"[’axkaxk 1/)3 p¢3 + ARl

where we have introduced the intrinsic length unit / (char-
acteristic Cosserat length) and the potentials ® and W, for
the axial strain and body forces; we have also introduced
the conditions a_iws =0 and a_?qujs =0.

The strain tensor can be presented with the help of the
introduced potentials as follows:

0? 1 0?
— 72 _ 72
Eig=1 8x,8xq(p + 2l Elps Ox,0x, Vs
1, ?
+§l 5qpsmws. (16)

Dividing this expression into the axial and deviatoric parts
we obtain

R. Teisseyre

P
Ey=" ,
ki Ox;0x;
o by Py
ED =P -t
la [8x,8xq 3 Ox,0x, a7
+li B i_i_ € i ,(/J
20x, tps ox, ox)) ]
and the motion equations become
2
O\ + 2p) AEy, — pa ;jk = PAD (18a)
A+ ) FEy 04 O p Fl _ paZEZ
Bxlaxq 3 axkaxk axkaxk O
_p 0*® B 0, AP N 2o % n %
— \0x0x, 3 20x, “lps Ox, “aps Ox; )’
(18b)

The latter is the wave equation for the deviatoric strain tensor.

However, as we already mentioned, the deviatoric
strains might also be described by the twist vector field,
w;; the related homogeneous wave equation has been derived
(equation 11). Now, despite the fact that the strain shear ten-
sor is symmetric, and the twist tensor is antisymmetric (equa-
tions 8 and 9), we may see their mutual correspondence,
Eﬁie&,q. The wave equation for twist (equation 11) may
be written (similarly to equations 8 and 9) in the 4D form

82&))\,‘,
H ﬁxk axk

POy

3[2 = 1)

Oy = iy + iy + 0y, (19)

where &, = EP,, &y = E, and &3 = EL). We have in-
cluded the source field given by the external 4D antisym-
metric tensor

Yy, = i¥Ypy' + Y397 + Youy?

0 Y Y3
Y, 0 Y3
Y3 =Yy 0 —Yp
Yo Y31 Yo 0

(20)

defined similarly to equation (8) with the help of the Dirac
tensors and the following scalars:

? 0 0 0 i
= 2 — o a_ a.
Y12 ) _8)(]8)(2 + 2axp (51]75 3)62 + EZPS axl)\lls_ )
2
0 o 0

5, 9] i
Yoy = 2| — - — — U,
w=l | Ox30x, * 20x, (53'” x| e 8x3) '
[ 0? d 5, d i
Yos =P|——— D+ ——— — — |V .
> | Ox,0x3 * 20x,, (52’” Ox3 3 sz) *
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Equation (18b) for the symmetric deviatoric strain ten-
sor is equivalent to that for the antisymmetric twist tensor
(equation 19); the latter helps us understand another kind
of motion, namely the twist motion.

As we already mentioned according to its definition,
the twist, @,,., means the rotational oscillation of the off-
diagonal shear axes of the deviatoric tensor, EZ, with the
related changes of the shear magnitude as caused by the in-
ternal microfracture and granulation processes (Fig. 1).

Rotations

Instead of the balance of moment of momentum, we
will introduce the equations for the antisymmetric part of
stresses. First, we consider the appropriate constitutive
law between the antisymmetric stress and rotation related
to the friction—fracture processes; we will call it Shimbo
law (Shimbo, 1975, 1995)

Stk = 2pwy- (21)

Here, in place of rotation rigidity we put the value equal to
rigidity modulus, p, as we believe that the rotation motions
are closely related to the S waves. The S-wave amplitudes
reach maxima along the off-diagonal axes of shear ten-
sor while the P-wave amplitudes reach maxima along the
main shear axes; an axial deformation also contributes to the
P waves with the displacements evenly distributed in space.

The motion equation related to the balance of antisym-
metric stresses S, replaces that for the stress moments; in
this balance there enters (1) the divergence of rotation force
moment acting on a body element due to the antisymmetric
stresses (rotational moment of forces) and (2) the accelera-
tion related to angular momentum (Teisseyre and Boratyniski,
2003, 2006)

o? o?
—xS[ni] = PEiki 3 Wi + emiP K (22)
n

where we have introduced the body force couples, K or
the body force moment Ky = €, pKp;). With the compati-
bility condition for the antisymmetric fields,

82

Eimkgjns Wis = 0
0x,,0x,,

introduced in a similar way as for the symmetric fields,
we get

0% S Puwy
[ki] ki
Ox,0x, 20 or + 20K, or
82wki azwk,- (23)
% PK (ki-

ox.ox, o2

These relations become equivalent to the balance of the mo-
ment of momentum when putting
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oMy 9Suy
2 ox, ™oxox,

Olw,,;
or My = 2#151kin’
n

where M, relates to the derivatives of rotation, and thus, the
space differences in rotation field distribution lead to rotation
moments, and constant 2/ relates for a given material to the
rotation modulus.

In this way we have shown that the motion equation for
the antisymmetric stresses can replace the balance law for the
stress moments. In the asymmetric elastic continuum, the
displacements and rotations are treated as independent fields;
in a natural way the axial deformation field (e.g., thermal
field) also enters, and a possible phase shift between dis-
placement velocity and spin, or equivalently between twist
motion and spin, originated in a source zone.

Concluding, we can write again the basic motion rela-
tions for the considered rotation and twist fields (according to
equation 10a with the defective current term, J,),

Owy 10 _47, O, 19 _
gy, VoK T VIR Sege Ty gk T
(24a)

09

their wave forms for the rotation vector (see equation 23)

0? 0?

wal_pwwl = pKy,, (24b)

and the 3D form of equations (19) and (20) with &, =
{@3, W31, Win}, Y = Y03, Y31, Yo}

s, P,

u@x,ﬁxk P on

=7, (24¢)

Solutions of the Maxwell-like equation (24a) lead us to
the geometrical orthogonality of the rotation and twist vec-
tors or to another phase-type orthogonality assured by the
phase shift of /2,

w, = £id,, (25)

where w, = W exp[i(k;x; — wt), &, = P expli(k;x; — wt)]
with the complex constants w? = abs(w?) exp(ivy,), @ =
abs(@?) exp(iy;), and angular frequency .

The solution in equation (25) will be called the synchro-
nization wave solution important at the extreme phenomena.

Extreme Deformations: Rotation—Twist Coaction

Now we can consider the extreme displacement defor-
mation; according to equation (2) we have

Dy = Ey + wy = E) + X,

_ (0w 0w\ 010w Oy
_2(8xk+3x1)+x 2(8xk Bxl ’ (26)
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and we will consider, among others, the cases XO = +1
and x°0 = +i.

Burgers and Frank Vectors

A fundamental approach to both the defect fields and
dislocation and disclination densities has been made by Kos-
secka and De Witt (1977) based on the Kroner theory of con-
tinuum in which the total fields, S}, EL,, wh,, are related
directly to displacement derivatives,

EL, = 1/2(0u,/0x,, + Ou,,/0x,) and
Whg = 1/2(du,/0x,, — Ou,,/x,).

In the Kroner theory the total fields are formed by the sums
of the elastic (physical) fields and the self-fields (density of
internal nuclei),

Kossecka and De Witt (1974) have defined the total twist-
bend tensor as based on the gradient of rotations,

oWr
T _ ., T _ s
mq 8)Cm mq mq mq
and applied its self-part into the expressions for the disclo-
sures given by the Burgers and Frank vectors

Bl = _¢[Eil - EIquiqxr]dlkv
Q, = —¢x3,dli = 0,4ds,,.

However, with this definition of the twist-bend tensor, both
the Burgers and Frank vectors will vanish, and the disloca-
tion and disclination fields would not exist when defining
their densities directly from these disclosures (Kossecka and
De Witt, 1977).

Instead, in our asymmetric theory with strains and ro-
tations related to displacements via equation (2), we take
another definition of the twist-bend tensor,

ow,,
Xing = Egst . 27)

s

and accordingly, we obtain directly (see Teisseyre and
Boratyniski, 2003)

B; = $[Ew) — €igrXigX) Al = $lEx + wii] dI,

Qq = 9€Xkl dlk = //qu dSp,

where we may note that for the continuum with the asym-
metric part of stresses, we are not restricted to the compati-
bility condition for the twist-bend tensor (Kleman, 1980).

(28)

R. Teisseyre

Fields Coincidence

For the case of x* = 1, we are dealing with wave prop-
agation governed by equation (24), and we have no contri-
bution to defect content (equations 2 and 28),

1 ou
B = §lEy + wyldl = §¢[E§3, +up] = 5198762 dl, =0,

1
B] = [[(al,l — 56[,10[”) dS[, = O, a[,l =0. (29)

For the case ¢® = 1 and x° in the range (0, 1), we may arrive
at the extreme deformation for the displacement motions; let
us take the following expression:

Dy = Epp + Xwi,
1 (0u; Ou 1 (Ou;, Ou
2 8X2 axl 2 8.X2 8x1
where for x* = 0 we have the shear deformation described
by the double couples, while for x* = 1 a full coincidence of

motions leads to the deformation expressed by the single
couples.

Dislocations

In the next case, x° = —1, and with equation (2) we
obtain

1
B = §lEy + wyldl, = 555[1521 — o]

arriving at the definition of density of dislocations, «,

1 OEy,
app — Eéplaxs = Epmk ( + 5ququ)

0x,,
_ OEy | Owy
N gp’”k(axm + 8xm)
— OEY,  Owy
- Epmk (axm - m) . (30)

This definition is adequate to those for the discrete edge and
screw dislocation fields.
By virtue of the compatibility condition the disclination
density vanishes (see equation 28),
8qu azwks
apq = Epmka— = Epmkgqnsﬁ =
'xm 'xm ‘xl’l

The formula for the dislocation density takes the form

16 62uk
I = 5 0pi0s = Epmk 37— -
pro PSS TP Oy Ox,

€1y

«

The constitutive relation of equation (15) supplemented with
that for the antisymmetric stresses and rotations of equa-
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tion (21) leads us from equation (30) to the following relation
between the dislocation density and asymmetric stresses,

3Ekl + %)

Oépl - E(Splass = Epmk (aTm axm
& pmk 0 v
= 5—,“@ |:(S(kl) - méklsii) + S[kl]]a
(32)

where the relations between the edge and screw dislocations
and asymmetric stresses become (no summation over the
uppercase indexes, e.g., P and PP)

€ pmk 0 14
Oépl = g—ug |:(S(kl) — 1+ I/éklsii) + S[kl]i| and

Epmk O

arr = (S(kP) + S[kP])v

where v is the Poisson coefficient. Both cases considered
may lead to the formation of the respective slip discontinu-
ities. Note that for the edge and screw dislocations we deal
with different rotation nuclei.

Other definitions of dislocation density might be
achieved through modification of the twist-bend tensor
definition when introducing some additional parameter x
to equation (27)

awmk
Xmg = RE€qsk >
mq qs axs ’

note that in the classical theory with defects, one may en-
counter different definitions for the dislocation field (e.g.,
the Burgers and Nye dislocations).

The related dislocation field formed by the edge and
screw dislocation densities presents a kind of extreme shear
deformation.

Wave Fields and Synchronization

The twist and rotation wave fields lead to a common
displacement field only for x° = 1 and x° = #i. The cases
of x* = =i, representing the phase shift by m/2 between
twist and rotation (displacement strain and displacement ro-
tation), relate to the dynamic origin of wave processes. When
considering the wave solution of equation (25) for the strain
and rotation, we arrive at the synchronization solutions for
the displacement strain and displacement rotation, and vice
versa; starting with the synchronization solutions for the
strain and rotation, we arrive at the wave solutions for dis-
placement strain and displacement rotation.

Granulation and Fracture Processes

At an advanced deformation process, material properties
change, and we shall modify the constitutive laws expressing
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the strain and rotation responses to asymmetric stresses
(equations 15 and 21); first, by including the time rates of
the respective fields and, in the final stage, by entirely re-
placing these fields by their time rates. The structure phase
indexes shall be adequately introduced similarly to those dis-
cussed for the strain and rotation (equations 2 and 4). Such
changes also occur due to an increase of defects and an onset
of the material granulation processes. These changes run in
different ways for the compressive and shear loads: in the
first case the fragmentation processes efficiently lead to gran-
ulation of the material, while at a shear load there appears a
remarkable increase of dislocations, dislocation arrays, and
microfracture density. However, in both cases there is an
effective interaction between the rotation and twist fields,
leading to a kind of synchronization of the granulation
and microfracture processes. That means that the rotation
and twist wave propagation may to some extent assure a syn-
chronization of fracture processes.

Under a compressive load the energy release relates to
the fragmentation revealed in rotation and granulation pro-
cesses, while the induced intrinsic shear motions attenuate
each other. Reversely, under a shear load a common shear
deformation along one zone attenuates the opposite rotation
motions along the perpendicular zones; in this way a shear
progress will prevail at only one shear fracture zone, leading
to concentration of dislocations and microcracks. Thus, at the
compressive load the total shear stress drop will be relatively
small, while the rebound rotations will be released in frag-
mentation and radiation of rotation energy. At the shear load,
arelease of shear stresses prevails leading to microcracks and
radiation of shear-strain energy.

Together with the microfracture processes, we recognize
the importance of granulation processes related to rotations
in the intermediate scale between the bond breaking pro-
cesses (the microscale) and material fragmentation (a some-
what greater scale). Thus, under the action of shear load, a
material granulation leads in a spectacular way to the forma-
tion of a narrow, long, mylonite zone. The coaction of spin
and twist shear motions in bond breaking, granulation, and
formation of mylonite material also helps us to understand
the fracture transport phenomena; based on the standard
asymmetric continuum theory, we can consider the material
progressive crashing and granulation processes leading to the
conditions that are more similar to fluid material; thus, we
finally enter into a domain of the Navier—Stokes transport
equations.

Thus, we may assume that the constitutive laws for rock
asymmetric continuum, relations in equations (15) and (21),
written for the deviatoric and the antisymmetric fields, will
gradually change during fracture and granulation to those in-
cluding the time-dependent processes,

o8P + TS0y = 2uED + 2nER,
(ik) .( ) k 33)
oS + TS[ig = 20Ei + 2nwik,
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where the material constants may become related to the mag-
nitudes of slip, u, and its rate, v.

Near a final stage these changes might lead to the melted
and granulated part of the mylonite material and to the con-
stitutive laws including only the time rates,

Seixy = 2nE, Sii = 2nwik, (34)
where we assume (for the sake of simplicity) that the
mylonite material is incompressible.

In our reasoning the shear load creates the dynamic an-
gular deformations, which may lead to the bond breaking
processes and, finally, to the fracturing transport process.
When studying the fault-slip solutions, we usually assume
the friction constitutive law additionally introduced to the
classical theory; we hope that with this new approach it will
be possible to replace the friction constitutive law by the
constitutive law joining the asymmetric stresses with spin
and twist fields in the appropriate fracture and fragmenta-
tion regime.

In the mylonite zone we further assume that the bond
breaks, and related slips precede the rebound spin and a re-
lease of rotation energy retarded in phase. We can expect an
increasing granulation and changes in friction, which may be
included in the antisymmetric part of the constitutive law.

This spin rebound motion retarded in phase in relation to
the acting shears (twist motion) can be described by the syn-
chronization solution for twist motion and spin (equation 25).
In this way we may consider the synchronization of micro-
fracture and granulation processes as caused by an influence
of the synchronization waves inside an earthquake prepara-
tion domain; the microfracture processes under compression

x 10° rad/s
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assure a common sense of the induced twist and spin motions
revealed in granulation and fragmentation of material, while
under shear load the appearing microfractures will prevail.
We may expect that the twist and rotation waves (equa-
tion 24a) generated inside a preseismic source would be re-
vealed in the different wavelets describing a coaction of these
motions and deformations; as discussed in the former sec-
tion, this coaction may be revealed in a common displace-
ment field for x° = 1 (accumulation phase) and for x* = +i
(release phase). With a counterpart of the time rates in the
constitutive relations, we arrive at a much more complicated
system. Thus, we suppose that the fracture process could pro-
ceed with the alternating accumulation and release micropro-
cesses. In such a situation the related twist and spin motions
will appear alternately as pairs of wavelets being in phase,
antiphase, or shifted in phase by +m/2.

Some Experimental Evidence

To compare the rotation and twist waves, we may use
a system of rotation seismometers (Moriya and Marumo,
1998; Teisseyre et al., 2003; Teisseyre, 2007; Wiszniowski
and Teisseyre, 2008). At the ground surface these complex
rotation fields are limited to motions around the vertical axis,
and we may rely on the data from two perpendicularly ori-
ented rotation seismographs. From each system consisting of
two oppositely oriented horizontal pendulums with related
sensors, we can find the spin motion as the mean value of
data from these sensors and the twist motion from their dif-
ference; however, we should be aware that the twist ampli-
tudes obtained in this way are exact only for the orientation
of seismographs coinciding with the main shear axes. Other-

102 102.5 103
x 10°® rad/s

102 102.5 103

Figure 2.

1035 S 104 104.5 105

Seismic records of spin (broken lines) and twist motion (solid lines) at the Ioanina Observatory, Greece, 5 hr 14 min, 14 August

2003; the presented time interval, 102—105 sec, starts at the beginning of the event and displays the spin and twist motion as recorded and
transformed from the two rotation seismographs of perpendicular orientation (the own period of pendulums is 1 sec); lower panel: the same
fields in the frequency interval of 10—12.5 Hz (the beginning of the event ceases to be clearly visible).
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wise, the twist data contain an uncertain scale of amplitudes.
Nevertheless, such a system still permits us to compare the
recorded rotation and twist wavelets as far as their shape in
different frequency ranges is concerned; the twist wavelets
present only the angular variations of the off-diagonal axes
of shears.

x 108 rad/s
4

In our examples we present the results related to some
events observed in the Ioanina Observatory in Greece for the
very near-field records (Fig. 2). In Figure 3 we show a typical
example of the observed coincidences of the spin and twist
motions, including the direct coincidences and those ob-
tained after the Hilbert transformation of the twist record
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Figure 3.  The fragments showing coincidences between the original spin records (broken lines) and the original and transformed twist
motion records (solid lines) in the four time intervals arranged up—down as follows: before the event, (96-99 sec) and (99-102 sec), and just
after its beginning, (102-105 sec) and (105-108 sec); the 102—105 sec interval corresponds to the lower panel in Figure 2. The fragments with
the original twist records are marked with symbol +, those with the opposite sign by symbol —, while those after the Hilbert transformation

by H (phase shift of 7/2) and —H (phase shift of —m/2).
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(the phase shift of the record is 7/2) and correspondingly,
those with reverse signs.

The studied examples reveal certain intriguing results:
some longer series of the synchronized wavelets of spin
and twist directly and with the constant phase shifts of ,
/2, and —/2 appear about a few seconds before the event
and just in the first 1-2 sec from its beginning, while some
wavelets with a direct correlation between twist and spin
motions appear later (see Fig. 3). For a seismic noise, such
coincidences are rare and seem to be only accidental. Nu-
merous examples we studied confirm these rules; and there-
fore, some synchronized series we observed, with or without
a phase shift (0, m, and £7/2), might be the candidates
for immediate precursors of the very near events (e.g.,
rockbursts).

Conclusions

We have proven the existence of rotation waves using
the continuum theory with an additional constitutive law re-
lating rotations with an antisymmetric part of stresses; this
remains valid even in a homogeneous elastic continuum.

We have defined the twist motion as the rotational os-
cillations of the main shear axes including the shear magni-
tude variations.

The wave equations derived for the twist and rotation
motions have been considered in relation to the processes
in seismic sources; these rotations at source zones help us
understand the physics and geometry of fracture and the
stress release processes in the precursory and rebound time
domains. In particular, our considerations lead to a new de-
scription of the source processes including rotational effects.
A microfracture process with synchronizing role of specific
waves may be explained by a hypothesis of the twist-shear
release followed by the rebound spin motion of the internal
particles or grains constituting a continuum.

We have derived the relations between the asymmetric
stresses and the dislocation density field. The conservation
laws for the rotation and twist show the mutual relation of
these fields; thus, the spin and twist motions are not com-
pletely independent but remain mutually correlated. More-
over, we may note that the derived wave equations for
rotation and twist motions are similar to the electromagnetic
wave equations.

Also worth mentioning is the fact that some methods
of the continuum mechanics can be easily applied to a ma-
terial with regular lattice structure. Varotsos and Alexopoulos
(1986) have obtained many important results considering
thermodynamics of the point defects in the regular lattice;
an extension of their approach is the consideration on the
thermodynamic functions related to the line defect density
in a continuum with an additional super lattice related to
these defects (Teisseyre and Majewski, 2001). Such an ap-
proach might also be useful in the continuum subjected to
advanced deformation processes close to fracture.

R. Teisseyre

Finally, it is easy to show how to construct the asym-
metric fluid theory with the help of the molecular stresses (in
our approach: asymmetric stress rates) and the related strain
and rotation rates; in this way, various extreme phenomena
could be theoretically explained (see Teisseyre, 2008).

Data and Resources

Seismograms used in Figures 2 and 3 were obtained dur-
ing the experimental measurements in Ioannina, Greece by a
team from the Institute of Geophysics, Polish Academy of
Sciences, Warsaw, Poland, and are available at the Institute’s
archives.
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