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An Asymmetric Micropolar Moment Tensor Derived from a

Discrete-Block Model for a Rotating Granular Substructure

by Robert J. Twiss

Abstract T define an asymmetric moment tensor for individual slip events and for
an average over multiple slip events using a discrete rigid-block model to account for
the brittle deformation of a granular material. For the brittle crust, the grains are taken
to be fault-bounded blocks. Permanent deformation accumulates by slip events on the
boundaries of the blocks. The deformation is described by two independent motions:
the local relative motion of the block centroids and the local rigid rotation of the
blocks about their centroids. Averaging each of these local motions over multiple slip
events in a volume defines both the macrodeformation, which consists of the macro-
strain and macrorotation, and the microrotation. An asymmetric local micropolar mo-
ment tensor and an asymmetric micropolar moment-density tensor are defined from
the local and the averaged motions, respectively.

The model shows (1) the symmetric part of the micropolar moment tensors de-
pends on the constant-volume local shear strain of the block centroids or its averaged
equivalent, the macrostrain; (2) the antisymmetric part depends on an objective quan-
tity defined as the difference between the rotational component associated with the
centroid deformation and the local block rotation, or their averaged equivalents the
macrorotation and the microrotation; and (3) the symmetric and antisymmetric parts of
the micropolar moment-density tensor can be inferred up to a scalar magnitude by a

micropolar inversion of standard seismic focal mechanisms.
Three field tests show consistency with the theory, but definitive tests are thwarted
by insufficient quantitative information or insufficient resolution of the available data.

Introduction

Seismic moment tensors are usually reported as sym-
metric tensors, even though evidence exists that at least in
some cases the tensors have an antisymmetric part (Molnar
and Deng, 1984; Sipkin, 1986; Miller et al., 1998). Randall
(1971) and Molnar (1983) defined an asymmetric seismic
moment tensor for an individual seismic event by an equa-
tion nominally similar to the one used in this article. Using
the notation in this article, the equation they proposed is
essentially

m]((([l) — /\(a)yl(((y)ngﬂ)s(a), (1)
where for the ath slip event, m\? is the geometric moment
tensor, which differs from the standard seismic moment
tensor only by the omission of the shear modulus on the
right-hand side of the equation; A is the magnitude of the
average displacement on the slip surface; 1/,({”) is the unit vec-
tor parallel to the slip direction; 775(” is the unit normal to the
slip surface; and S(® is the area of the slip surface. Molnar
(1983) attempted to relate the antisymmetric part of this mo-
ment tensor to the antisymmetric part of the displacement

gradient tensor associated with individual seismic events.
Kostrov (1974) criticized the definition in equation (1), how-
ever, as being physically incorrect because the vectors 1/5(“)
and nga) are indistinguishable in the dipole approximation.
Jackson and McKenzie (1988) argued, moreover, that the
antisymmetric part of this tensor is not independent of the
rigid rotation of the coordinate system in which the tensor
components are described. It, therefore, does not define an
objective tensor and should not be used in an analytical treat-
ment of a physical phenomenon.

Other mechanisms have been proposed as explanations
for antisymmetry in the seismic moment tensor, such as het-
erogeneous slip distribution on a fault (Takeo, 2006), rota-
tional components of motion (see Teisseyre et al., 2006)
including seismic events on nonplanar faults, source multi-
plicity, near-source structural complexity, anisotropy, and
tensile failure under high fluid pressure (see references in
Sipkin, 1986; Julian ef al., 1998). In this article, I propose
a model for a granular material by which we can represent
the kinematic effect of fault blocks in deforming crust. The
model accounts for a rotation of the blocks that is indepen-
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dent of the large-scale deformation, and it leads to an objec-
tive asymmetric moment tensor.

The recent status of investigations into rotational effects
in seismology is provided in this issue of the Bulletin of the
Seismological Society of America and in a collection of
articles edited by Teisseyre et al. (2006). Both collections
include theoretical developments for materials with sub-
structure, such as granular materials. Such materials can be
modeled using the well-established continuum theories of
materials with substructure, including the director theories
(Cosserat and Cosserat, 1909) and theories of micromorphic
and micropolar mechanics (e.g., Eringen, 1966a,b, 1999a,b).
These continuum theories are equivalent to assuming that
each point in the continuum is attached to a set of three mu-
tually orthogonal unit vectors called directors, which can ro-
tate rigidly and can stretch and shear, independent of the
motion of the points to which they are attached.

In both micromorphic and micropolar theories, a large-
scale continuum deformation (called the macrodeformation)
is defined from the average relative motion of the centroids
of the grains in a granular material (Figs. 1 and 2a,b). An
independent microdeformation defines the average behav-
ior of the individual grains relative to their centroids, which
(in the continuum description) is equivalent to the rotation,
stretching, and shearing of the directors. For micropolar
materials, the microdeformation is restricted to a rigid rota-
tion of the grains (Fig. 2a,c), which is the model I use
in this article; for micromorphic materials the grains can
also deform.

Figure 1. A two-dimensional model of an idealized granular
material subjected to a divergent dextral shear. The dots locate the
centroids of each hexagonal block. The blocks are rigid so the local
deformation occurs at the block boundaries. An average of the com-
ponents of motion over a continuously movable volume V' defines
the values of the continuum field variables at the centroid of the
volume V. The average of the block-centroid motions defines the
continuum macromotion, and the average of the block rotations
about their centroids defines the continuum microrotation. The lo-
cal deformation for the two shaded blocks is examined in detail in
Figure 2.
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Seismic events on the surfaces surrounding an individ-
ual grain accommodate the relative motion of the grain cen-
troids, the macrodeformation, as well as the independent
rotation of the grain, the microrotation. The antisymmetric
part of the asymmetric micropolar moment tensor describes
the difference between the microrotation and the rotational
component of the macrodeformation. Because the difference
between two independent rotations is itself independent of
the rotation of the reference frame in which the rotations
are described, it is objective and, therefore, suitable as a con-
stitutive variable for describing physical phenomena.

A micropolar continuum description of a granular ma-
terial can be defined by assigning the value of a variable at
any given point in the continuum to be the average of that
variable over a finite volume )V of the granular material for
which the centroid of the volume is at the particular point. }V
is large relative to the scale of the grains but is small relative
to the scale of the deforming body (Fig. 1). Under these cir-
cumstances, the average behavior of the grains becomes rep-
resented by the behavior of the directors in the continuum
model. The moment arms for the grains are of finite length
(as defined by the grain dimensions) and, therefore, torques
can accumulate on the grains. In the averaging that leads to
the micropolar continuum description, these torques lead to
couple stresses and to an antisymmetric component for the
stress tensor at each point in the continuum (e.g., Eringen,
1966a,b; Pujol, 2009).

The classical continuum theory assumes the moment of
momentum is balanced at each point in the continuum, which
leads to a symmetric stress tensor, a double-couple mecha-
nism for seismic events, and thus, a symmetric seismic mo-
ment tensor. For a material with a granular substructure,
however, the moment of momentum need be balanced only
over volumes of finite size, which are defined by the grains of
the material substructure, because the torques supported by
the rigid grains contribute to the balance of moment of mo-
mentum. These torques appear as couple stresses in the mi-
cropolar continuum description. Thus, in the block model a
seismic event at one surface of a grain can be considered a
single-couple event for which the moment of momentum is
balanced by torques on the grain.

The substructure of micromorphic materials gives rise to
transient seismic rotational waves Teisseyre (1973, 1974)
(see also Teisseyre and Boratyfiski, 2006; Teisseyre and Ko-
zdk, 2006). These waves, however, are difficult to detect and
leave no permanent deformation. In contrast to studies of
such transient effects, I and my colleagues have used the ki-
nematic micropolar theory to investigate the permanent, or
nonrecoverable, effects of rotational motions in granular ma-
terials during seismogenic deformation (e.g., Twiss et al.,
1991, 1993; Unruh et al., 1996; Twiss and Unruh, 1998;
Lewis et al., 2007; Twiss and Unruh, 2007).

The effects of a granular substructure on seismic signals
become important when the scale of observation of the signal
is comparable to the scale of the substructure. In our case, the
grains are the fault blocks in the brittlely deforming crust.
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Figure 2. Deformation of a two-dimensional discrete-block model for a granular material, as defined by two representative blocks

(shaded blocks in Fig. 1). (After Twiss and Unruh, 1998, fig. 4.) (a) The undeformed state. 1® is the unit normal to the ath surface,
and it points into the Ath block. P is the position vector of the centroid of the lower block. AP is the vector between centroids of
neighboring blocks, which has a component of length normal to the ath surface of AL, H(lﬂ) and ng) are unit vectors parallel to material
lines in the rigid blocks, which therefore rotate with the rigid rotation of the blocks. (b) The deformed state resulting only from the local
centroid deformation component: p‘® and u(® are the position vector and the displacement vector, respectively, for the centroid of the lower
block. Ap‘® and Au(® are the change in the position vector and the displacement vector, respectively, for the centroid of the upper (3th)
block relative to that of the lower block. The white arrows Az and (Au® - 5(®))n(@ are the shear and normal components of the dis-
placement Au'® parallel and normal, respectively, to the ath surface. The white shear couple on opposite sides of the ath surface illustrates
the shear Az on the ath surface. (c) The deformed state resulting only from the block-rotation component: hiﬂ ) and hgd) are the unit vectors
H(l‘d) and Hg@ after rotation of the block by a clockwise angle of AG'¥), which is a positive rotation about an axis that is positive into the
diagram. The black shear couple on the ath surface A¢® is the shear displacement due to the rotation of the two adjacent blocks. Note that
this shear couple has the opposite shear sense from the white shear couple in part (b). (d) The total deformation or the sum of the independent
centroid deformation and block rotation: Av(® is the net slip vector on the ath surface, which is the sum of the slip components Az and

AC@ shown in parts (b) and (c), respectively.

Thus, we expect the micropolar theory to be of use in ac-
counting for the observations of seismic phenomena for
which the scale of the seismic event (e.g., the rupture radius)
is comparable to the scale of the grains (or fault blocks)
defining the substructure. In the Analysis section, I use a
discrete rigid-block model to describe the deformation of a
granular material. With this model I define a local asym-
metric micropolar moment tensor for each individual seis-
mic event on a single shear surface (Fig. 2) and a micropolar
moment-density tensor for clusters of seismic events con-
tained within a volume V. The latter tensor is the average
of the local micropolar moment tensors in the volume ) that
is large relative to the rupture radius of any of the included
events but small relative to the size of the deforming body
(Fig. 1). I show that the symmetric part of the asymmetric
micropolar moment tensor is defined by the isochoric (or
constant-volume) part of the instantaneous strain tensor,
which differs from the deviatoric strain in that the volumetric
component of the deformation can be anisotropic (i.e., the
volumetric strain can be distributed unequally among the
three principal strain axes). This result for the symmetric part

of the tensor is similar to the results of Kostrov (1974,
equation 3.11).

I also show that the antisymmetric part of the asym-
metric micropolar moment tensor reflects the instantaneous
average relative rotation between the macrocontinuum and
the local rotating fault blocks. This result provides the spe-
cific relationship that Twiss et al. (1993) claimed must exist
on the basis of general symmetry arguments.

Our research over the past 15 years has turned up several
instances in which we can test aspects of the micropolar
model. In the section Evidence for Nonrecoverable Micro-
polar Effects, I review evidence from three seismotectonic
studies that supports this model.

In the following analysis we refer to the micropolar mo-
ment tensor as a shorthand name for the objective asym-
metric isochoric micropolar geometric moment tensor. The
geometric moment tensor is defined in a manner similar to
the standard seismic moment tensor, except that the shear
modulus is omitted from the definition. The result is that
the geometric moment tensor is related to the deformation
of the material rather than to the stress. Ultimately the rela-
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tion to the deformation is more appropriate because the de-
formation is the directly observable quantity, whereas the
stress can be only inferred from the deformation and then
only by making additional assumptions about the mechani-
cal properties of the material (Twiss and Unruh, 1998). Thus,
one can view the classical seismic moment tensor as the
geometric moment tensor multiplied by the shear modulus
that is introduced simply as a means of expressing the pri-
mary description of the deformation in units of stress.

We use the common Einstein summation convention by
which summation is implied over repeated subscripts in the
same term, and we use the subscript comma notation to in-
dicate partial differentiation with respect to the coordinates
Xy, that is, for vector components vy,

51} k
Ve =——. 2
=g @)
In distinguishing the symmetric and antisymmetric com-
ponents, with respect to subscripts k and /, of tensors such as
ty; and ty,v,,,, we use the shorthand subscript notation:

1 1
twny = 5 (i + ti)s LmUmi) = E(tkmvml + Vi)

2
1
t[km Ui = E (tkmvml - tlmvmk)'

3

Table 1 gives a list of the symbols used in the analysis,
the definition of each, and the equation in which each is first
used or defined.

1
Iy = 5 (ta — i),

Analysis

In this section, I develop the equations for the asym-
metric micropolar moment tensor and illustrate them with
reference to the deformation of a geometrically idealized
two-dimensional model of a granular material (Figs. 1 and
2). After setting up the basis for the model (see the section
The Discrete-Block Model), I derive separately the contribu-
tions to the micropolar moment tensor and its volume aver-
age, the micropolar moment-density tensor. These tensors
are derived, respectively, from the local centroid deformation
and from its volume average, the macrodeformation (see the
section Local Centroid Deformation Components). I then
derive the contributions provided respectively by the local
block rotation and its volume average, the microrotation
(see the section Local Block-Rotation Components). In each
case, I initially derive the local micropolar moment tensor
for each slip event in the local coordinates 5,(:”, as defined
in the following section. These coordinates are unique to
each of the N slip events, so I then transform the expressions
from the local coordinates to the common coordinates x; so
that the results for each slip event can be averaged together.
In the section The Complete Micropolar Moment Tensor,
for both the local and the volume-averaged cases, I add the

R. J. Twiss

separate contributions together to find the expressions for the
complete local micropolar moment tensor and the complete
micropolar moment-density tensor. Finally, I show how the
volume-averaged results for the discrete-block model are
related to the results derived by Twiss et al. (1991, 1993)
for the micropolar continuum theory (see the section Com-
parison of the Discrete-Block and Continuum Models of
Deformation). The present derivation, however, provides
additional relations not available from the earlier work. In
particular, it shows that the symmetric part of the local mo-
ment tensor contains information about the microrotation,
which explains how inversion of symmetric focal mecha-
nisms can give information about the microrotation. It also
provides a specific relation between the relative vorticity
parameter of the continuum micropolar theory and the micro-
polar moment-density tensor, which previously we had not
derived.

The present analysis is done using quantities that de-
scribe the instantaneous deformation. These are equivalent
to similar quantities that describe the deformation rate. In
particular, the instantaneous strain, instantaneous rotation,
instantaneous deformation parameter, and instantaneous rel-
ative rotation parameter are equivalent, respectively, to the
strain rate, rotation rate or vorticity, deformation rate param-
eter, and relative vorticity parameter of micropolar theory
(Twiss et al., 1991, 1993). They differ only by a factor of
an infinitesimal increment of time dt, which is an immaterial
factor in the analysis.

The Discrete-Block Model

The structure of a granular material is idealized in two
dimensions by a set of hexagonal blocks tiling a plane. The
deformation is concentrated as discrete slip events on the
interfaces between the blocks. These interfaces can be num-
bered in some unique way, and the interface under consid-
eration is the ath interface (Fig. 2a). In some cases, it is also
convenient to consider the blocks to be uniquely numbered
and to refer to the Sth block (Fig. 2a), with the surfaces of
that block numbered v = 1:6 (see the figure in Appendix A).

The motion of the centroids of the blocks is distin-
guished from the independent rotation of the blocks about
their centroids. These two independent components of the
motion are defined at both the local and the volume-averaged
scales. For two fault blocks (or grains) in the granular ma-
terial that are adjacent to each other across an interface (e.g.,
the gray-shaded blocks in Figs. 1 and 2), I define the local
centroid motions and the local block rotations to be the
motions that result from a single slip event at an individual
interface. Accommodation problems, which are second order
effects, are ignored. These motions are also averaged over
all the o = 1:N slip events in a volume V, where V is large
enough to contain many slip events (empirically, many im-
plies more than about 20 events) but is small relative to the
size of the deforming body (Fig. 1). The values of these
averages are associated with the point at the centroid of
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Table 1

List and Definition of Variables

Symbol

Definition

Equation Number

dy. dy
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mk[
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The macrodeformation rate tensor; symmetric part of the macrovelocity gradient tensor in the continuum
micropolar theory; the superposed circumflex and single subscript indicate the principal values.

Volume-averaged macrostrain; symmetric part of the averaged macrodisplacement gradient u; ,,. Both
symbols with a circumflex (hat) are components in the principal coordinates of e;;; the symbol with one
subscript are the principal values.

The macrostrain in the continuum micropolar theory, shown respectively as components in the common
reference coordinates x;, and in the principal coordinates of e;;.

An orthogonal triad of material unit vectors in the unrotated Sth block, which are rotated with the block
into the triad of material unit vectors hizg) .

An orthogonal triad of material unit vectors in the rotated Sth block, which have been rotated with the
block from the triad of material unit vectors Hf,i-s) in the unrotated block.

Unit base vectors in the ng) local coordinate system; see E(,?) for specific orientations.

Base vectors in the common coordinate system x,, taken for the sake of being specific, to be i; = east,
i, = north, i3 = up.

The magnitude of the gradient, normal to the ath shear plane, of the slip velocity from the continuum
micropolar theory. It has units of inverse time.

The component of the centroid-to-centroid vector Ap(® in the direction normal to the shear plane. It is a
measure of the size of the fault blocks adjacent to the ath shear plane.

The local scalar geometric moment for a slip event on the ath surface contributed by the
macrodeformation.

The local scalar geometric moment defined for the continuum micropolar theory.

Contribution of the macrodeformation to the micropolar geometric moment-density tensor for a set of slip
events in a given volume V.

The part of the micropolar moment-density tensor contributed by the local block rotations for a set of slip
events in a volume V.

The complete micropolar moment-density tensor and its transpose. The circumflex (hat) indicates
components in the principal coordinates of ey;.

The micropolar moment-density tensor for the continuum micropolar theory and its transpose.

The part of the local micropolar geometric moment tensor contributed by the local centroid deformation.
Components are in the local (5}:”) and common (x;) coordinates systems, respectively.

The part of the local micropolar moment tensor contributed by the local block rotation. Components are in
the local (f,({")) and common (x;) coordinates systems, respectively.

The complete local micropolar moment tensor. Components are in the local (£
coordinates systems, respectively.

The local micropolar moment tensor for an individual event defined in the continuum micropolar theory.

Before a slip event, the relative position of the centroids of the two blocks adjacent to the ath surface.

After a slip event, the relative position of the centroids of the two blocks adjacent to the ath surface.

Orthogonal transformation that transforms components in the local ff(“) coordinates to components in the
x; coordinates. It is defined by the dot products of the base vectors i; and Lga).

Orthogonal transformation tensor that rotates Hf.-a) in the unrotated fault block into h(mﬂ) in the rotated fault
block; the tensor is nonsymmetric. Components written with a superposed tilde are given in the local
coordinate system fi,a) )

The local block-rotation tensor for the Sth block; an antisymmetric tensor. Components are in the local
({,(f)) and common (x;) coordinates systems, respectively.

The volume-averaged microrotation for a set of N events in a volume V. The circumflex (hat) indicates
components in the principal coordinates of ey;.

The microrotation in the continuum micropolar theory, shown as components in the common reference
coordinates xzand in the principal coordinates of dy;, respectively.

Volume-averaged macrorotation; antisymmetric part of the averaged macrodisplacement gradient u;,,.
The circumflex (hat) indicates components in the principal coordinates of ey;.

The macrorotation in the continuum micropolar theory, shown as components in the common reference
coordinates x;, and in the principal coordinates of e;;, respectively.

The area of the ath surface.

The local displacement of the centroid of one block relative to the centroid of the adjacent block that shares
the ath interface and its components in the 5,((“) coordinates.

Local centroid displacement gradient in the local coordinates 5}6”) and the common coordinates x;. The
subscript comma notation “,/” indicates the partial differentiation Du,(f’) /0x;.

Volume-averaged macrodisplacement gradient tensor components given in the common coordinate
system. The subscript comma notation “,/” indicates the partial differentiation du;/0x;.

The volume-averaged isochoric (constant volume) macrodisplacement gradient.

The macrodisplacement gradient in the continuum micropolar theory.

}(a)) and common (x;)

(103), (125)

(44), (128)

(104), (117), (127)
Fig. 2a,b; (47)
Fig. 2c,d; (47), (48)

Fig. 2; (4)
@®)

(103)
(16)
(24), (26)

(109)
(36), (37)

(66), (67)
(92)—(96), (100),
(101)—(102), (129)

(114)—(115), (122)—(123)
(24), (27), (33), (34)
(62), (65)
(81)—(83), (87)-(90)
(109)

Fig. 2; (4)

Fig. 2; (6)
®)

(48), (49), (51)

(52), (60)
(68), (128)
(104), (120), (127)
(44), (128)
(104), (119), (127)

(1), (26)
(7). (13)

(13), (23)
(33)

(40), (41)
(105), (116)

(continued)
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Table 1 (Continued)
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Symbol Definition Equation Number
V@ The local volume associated with the ath surface over which the shear on the ath surface is considered to (29)
be distributed. Same as V), but with a different system for labeling the surfaces.
Gl The volume associated with the yth surface of the Sth block, consisting of portions of the volume of the Fig. Al; (A3)
[th block and of the adjacent block across the ~th surface.
v Volume of the fth block. Fig. Al; (A3)
% A volume that contains a large number N of slip events, where V is large relative to the rupture radius of Fig. 1; (35), (36)
any of the events contained within it but is small relative to the scale of the deforming granular material
body.
Av(® Scalar magnitude of the complete local slip vector Av(® on the ath surface. (7)
Av®), Af;gf‘), The complete local slip vector on the ath surface comprising the sum of the slip components from the (72), (73), (75)
Av,(f) local centroid deformation and the local block rotation. Components are in the local (5,((”)) and common
(x;) coordinates systems, respectively.
W, The relative vorticity parameter vector in the continuum micropolar theory. (125)
w The relative vorticity parameter in the continuum micropolar theory. Defined in the principal coordinates (126)
of the deformation rate tensor dy; to be W,, the second component of the relative vorticity parameter
vector.
Wims v?/,m The macrospin tensor; antisymmetric part of the macrovelocity gradient tensor in the continuum (103), (125)
micropolar theory; the superposed circumflex indicates components in the principal coordinates of the
deformation rate tensor dy;.
Xy The common coordinate system, taken for the sake of being specific, to be x; = east, x, = north, Fig. Al; (8), (9)
x3 = up. The base vectors in this coordinate system are iy.
Az@ AZ,(:I) ,  The contribution to the shear on the ath surface from the local centroid deformation. Components are in (10), (14), (23)
Az,({") the local (f,(f)) and common (x;) coordinates systems, respectively.
(% Kronecker delta; component = 1 if kK = [; component = 0 if k # [. (8), (18), (A20)
Exim Variously called the alternating tensor, the permutation symbol, the antisymmetric symbol, the Eddington (50)
epsilon, or the Levi—Civita symbol, it takes values of +1 or —1 if {k/m} is an even or odd permutation
of {123}, respectively, and a value of 0 if any two subscripts are the same.
Dy, ‘i’kz The anisotropic volumetric macrodeformation tensor. Measure of volumetric deformation that is (39)
distributed unequally among the three principal axes of strain. The circumflex (hat) indicates
components in the principal coordinates of ey;
Dy The anisotropic volumetric macrodeformation tensor in the continuum micropolar theory. Measure of (118)
volumetric deformation that is distributed unequally among the three principal axes of strain.
@, 7o, The unit normal to the ath surface. Components are in the local (ff(“)) and common (x;) coordinates (11), (23)
7 systems, respectively.
L,(C“) Unit base vectors in the EL”) coordinate system; they are parallel to 153". Fig. 2; (6), (8)
A@ The magnitude of the slip vector averaged over the area S®) of the ath shear plane. (1)
@ The magnitude of the slip vector averaged over the area S of the ath shear plane for the continuum (109)
micropolar theory.
1/,({“) Components of the unit vector that is parallel to the direction of the complete local slip vector Av(® in the (77), (78)
ath shear plane.
O The unit vector parallel to the slip velocity vector on the ath shear plane in the continuum micropolar (103), (106)
theory and its components in the common x; coordinate system.
0 In the appendices, defines the angle between the unit normals to the surfaces of a block and the common Fig. Al; (AS)
coordinates.
AGB) Angle of rotation (microrotation angle) of the th block about the rotation axis p!” through the block (49), (53)
centroid. A positive rotation is defined to be a right-handed rotation about the positive rotation axis.
pD, Z)(“’), A unit vector through the centroid of the Sth block that is parallel to the microrotation axis. Components 49), (53), (54), (59)
o are in the local (52")) and common (x;) coordinate systems, respectively.
ffﬁ The local microdisplacement field associated with the local block rotation of the [th block about its Fig. 3
centroid.
Wims cf;,m The microspin tensor in the continuum analysis; the superposed circumflex indicates components in the (103), (125)
principal coordinates of the deformation rate tensor dj;.
E%’) Local Cartesian coordinate system for the ath surface used to describe the undeformed state. Base vectors Figs. 1, 2; (4)
in this coordinate system are I(,?); Eg“) and 1(3”) are normal to the ath interface, and E(l") and I(lﬂ) are
parallel to the total slip direction of the block into which Ig") points.
AEL”) Components in local coordinates of the relative position vector AP between the centroids of the two Fig. 2a; (4)
blocks adjacent to the ath slip plane before the slip event.
,((“) Local Cartesian coordinate system in which the deformed state is described and which has unit base Figs. 1, 2
vectors L,(c“). We take this coordinate system to be coincident with ng).
Afz“) Components in local coordinates of the relative position vector Ap(® between the centroids of the two (6), (16)

ACW, ACY,
Acia)

blocks adjacent to the ath slip plane after the slip event.
The total slip on the ath surface due to the rotation (microrotation) of both blocks on opposite sides of the
surface. Components are in the local (5,(;')) and common (x;) coordinates systems, respectively.

(56), (57), (59)

The symbols are listed alphabetically by variable, first for the Roman and then for the Greek alphabets.
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V. Because the volume can take any location in space, an
average can be defined for any point in the space, thereby
defining a micropolar continuum description of the deforma-
tion. The average of the local centroid motions defines the
continuum macrodeformation, and the average of the local
block rotations defines the continuum microrotation. These
averaged quantities are equivalent to the macrodeformation
and microrotation of the continuum micropolar theory (Twiss
et al., 1991, 1993). The local micropolar moment tensor for
an individual slip event is defined from the local centroid mo-
tion and the local block rotation. The micropolar moment-
density tensor is defined from the macrodeformation and
the microrotation

The undeformed positions of the block centroids are de-
scribed in a local Cartesian coordinate system :Ef), which
has unit base vectors IK that are perpendlcular or parallel
to the ath interface (Fig. 2a). :(") and I(G are normal to the
ath interface, and :ﬁa) and I(“) are parallel to the complete
slip direction on the ath surface. Thus, the (H(”), :(2”)) plane
is the local shear plane, which contains the slip vector, and
the (2, =\ plane is normal to the shear plane and also
contains the slip vector.

Before deformation the relative position of the centroids
of the two blocks in contact across the ath surface is given by
the vector (Figs. 1 and 2a)

AP@ = AT @)

For the particular geometry shown in Figure 2a,

AP® = AEVI, 5)
During a slip event the block centroids are displaced
relative to one another, and this displacement defines the lo-
cal centroid motion; the blocks also rotate about their cen-
troids, which defines the independent local block rotation.
After a slip event, the geometry of the blocks is described
in a coordinate system 5(“) , which has unit base vectors
(a) This coordinate system is taken to be coincident with
"((” (Figs. 1 and 2).
The relative position of the two block centroids after the
slip event is given by (Fig. 2b)

Ap(u) — Ag}({a} L](ca) ; (6)

and the local displacement of one centroid relative to the
other is, therefore,

Au®@ = Ap@ — AP@ @)
(Fig. 1b).

The local block rotation of the 3th block A8 is a pos-
itive rotation if it is a right-handed rotation about the {ga)
coordinate axis, which is positive into the plane of the dia-
gram in Figure 2c; thus, for the axis orientations depicted in
Figure 2c, a positive rotation is a clockwise rotation.
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It is clear from Figure 2c that a positive increment of
rotation of the blocks about the 5&0) axis results in a slip
on the ath surface, which is opposite in shear sense to the
slip resulting from a positive increment of the local centroid
displacement. The complete slip vector is the sum of the
shear components contributed by the local centroid displace-
ment and the local block rotation. In general, the complete
slip vector is not colinear with either of these shear compo-
nents because the local centroid displacement need not be in
the (£\*, f(a) ) plane and the local block rotation need not be
about the §2 ) axis.

We can assume, for the sake of being specific, that the
common coordinates consist of the right-handed Cartesian
geographic coordinates x; = east, x, = north, and x; = up.
The unit base vectors in this coordinate system are i;. The
orthogonal transformation that transforms components in
the local coordinates 5,(((’) to the common coordinates x; is
defined by

00 =5,
(8)

fc‘;) =i - L;“) = cos(ikll,;“)),

0O = by det Q) =
The 4, are Kronecker deltas. The last constraint on the
value of the determinant in equation (8) limits the orthogonal
transformations to proper rotations (i.e., reflections are not
permitted). A superposed tilde on vector and tensor com-
ponents indicates they are given in the local coordinates
(”) . Thus, for an arbitrary vector vfc and an arbitrary second
rank tensor t§<1 , the components in geographic and local co-
ordinates are related to one another by

U((y) — Q((y) 1~}(a) 1~)(u) — U(-(Y)QEI?),

)

Local Centroid Deformation Components

Contribution of the Local Centroid Deformation to the Slip
Vector. The contribution to the shear on the surface S
from the local centroid motions is the partial slip vector de-
noted Az and given by

Az(a) — n(a) X Au(a) X n(a)’ (10)

where 7 is the unit normal to the ath surface, Au(® is the
relative displacement of the centroids of adjacent blocks
(equation 7, Fig. 2b), and the multiplication symbol indicates
the vector or cross product. By definition,

,r’(ry) ((¥) ,

77m _[O 0 1]’

@ . pl@) =1,
n-n (an

N(a

= n(a)

where the dot indicates the scalar or dot product. It is not
difficult to show that (Fig. 2b)
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The local centroid displacement gradient is defined as the
relative displacement of the block centroids for the blocks
adjacent to the ath surface, divided by the distance between
the centroids (Fig. 2b). Thus, we can express the displace-
ment increment Au‘® in terms of this local centroid dis-
placement gradient. Using component notation, we write

_ o

('1)
Al 8 f(a)

AL, (13)

Combining equations (10) and (12), writing the vectors as
components in the local coordinate system E}ca), and intro-
ducing equation (13) gives

(@) _ k J @)~ (a) (a)
847 = [agﬁ:f) - (ag”’) K )}Ag (1

At the ath surface, the only nonzero components of the
local centroid dlsplacement gradlent are the gradients along
the direction ¢\, that is, 9™ /9L,

~(a)
0 0 2
() oG
a ou, @
=100 ’E((,, (15)
aé-l 312%“)
3
0 0 26
From equation (6), we have
Ag(a) Ap(u) ), Afga) — Ap(a) . Lga) = Ag(a)’
(16)
whereby for the terms in equation (14), we have
8~(&) N a~(0é) Y a~( @
Uy () _ Yk Uy A() ouy )Af (17)

ag(a) ag(ﬂ) Tlm

s
where 7"75,? ) is given by the fourth part of equation (11) and
AL is the component of the centroid-to-centroid vector
Ap'® in the direction normal to the shear plane (Fig. 2b,
equation 6). Thus, it is a measure of the block size.

Using equation (17) in equation (14), we have

o 812(04) 814 e » |
i {65&) _[ §Ea> N )}%}nﬁnmz(ax (18)

where 6,,, is the Kronecker delta.

Because of the fourth part of equation (11), the only
values of equation (18) that can be nonzero are those for
which the subscript m = 3, and the only nonzero values
for the term in square brackets are those for which subscripts
i = j = 3. Thus, we can write equation (18) as

R. J. Twiss
~(@) ~(a)
Az = BZ(Z) z?“) 5k3}MW, (19)
3

whereby we find, for the components of the partial slip
vector,

~(a) _ o oa oa” | o @
Azk = {[afgu) 05(;) 6&-;&) 0 0 d{.(u Al

(20)

a 61;(0)
A7 = [(%m) 267 O}AZ(“). (1)
The second terms in equations (18) and (20) represent the
part of the centroid displacement gradient that is normal to
the ath surface; these terms, therefore, describe a uniaxial
volumetric deformation. Thus, the slip vector, which lies
strictly within the ath surface, is determined by the constant-
volume component of the local centroid displacement gradi-
ent (Fig. 2b).

For the special case in Figure 2, for which u, = 0, the
components of the partial slip vector on the ath surface are,
from equation (21),

0 O}Ae@. (22)

We can express the partial slip vector in terms of its com-
ponents in the common coordinate system x; by using equa-
tions of the type in equation (9). We substitute these forms
into equation (18) to change the components in the local co-
ordinate system into the components in the common coordi-
nates. Then, simplifying using equation (8) gives

Az = [, — i) el AL (23)

ij
The term in parentheses (...), when multiplied by AL, is
just the uniaxial volumetric deformation at each fault surface
written in the common coordinates. Therefore, the term in
brackets [...], when multiplied by AL@ is the constant-
volume component of the local centroid displacement gradi-
ent written in the common coordinates.

Contribution of the Local Centroid Deformation to the Local
Micropolar Moment Tensor. The contribution of the local
centroid deformation to the local micropolar moment tensor
is written d)rhﬁ) , where the left subscript (d) identifies the
centroid deformation contribution. It is defined to be the
product of the local scalar geometric moment contributed
by the local centroid deformation d)ng) times the two unit
vectors parallel, respectively, to the slip direction and the nor-
mal to the slip surface:

(@ @ 85"
~(a) __ « ~(c
@M = @Mo 1Az (24)
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where |Az(®| is the magnitude of the slip on the ath slip
surface contributed by the local centroid deformation,

|AZ@| = [Az@ - Az(@]1/2, (25)

The local scalar geometric moment is defined by

WM§? = 1825, (26)

where S is the area of the ath surface, whereby equa-
tion (24) becomes

@y = Az Vs, 27)

Using equation (18) in (27) gives

(@) (@

@m NSZY) - {8uk B |:aui 7~7(u)7~7('d)i|6k }77111) (Q)V(O)

) i j m
o6 Log”

(28)

where we have introduced the definition of the volume as-
sociated with each plane S by (Fig. 2b),

Vi@ = Ag g, (29)

Using the fourth part of equation (11), we can expand
the expressions in equation (28) to find

o'
0 0 5 00 0
(@) _ oiy” 00 0
@mi =1[0 0 o |~ i ve,
ol 0 0 W
0 0 5 ’
3
(30)
~(a)
00 %y
Wi = 1o o o |Ve. 31)
af;a)
00 0

Thus, the moment tensor describes only the constant-volume
component of the local centroid deformation.

Equation (31) shows that, for an individual slip event
such as the one depicted in Figure 2b, the contribution of
the local centroid deformation to the local micropolar mo-
ment tensor is asymmetric. The existence of an antisym-
metric part to this tensor derives ultimately from the fact
that, in materials with a granular substructure, the moment of
momentum is balanced on the scale of the rigid grains or
blocks, not locally at each seismic event as in classical the-
ory. Thus, in defining the micropolar moment tensor we con-
sider only a single-couple mechanism rather than the usual
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double-couple mechanism that results in a symmetric mo-
ment tensor.
For the special case model in Figure 2b, for which

ft;ﬂ) = 0, equation (31) becomes
aﬁ((k)
0 9~
~ (@) ¢y (a) 32
@™ =10 o o [V (32)
0 0 O

We now transform the components of this part of the
local micropolar moment tensor, which are contributed by
the local centroid deformation for an individual slip event,
to the common geographic coordinate system. Using equa-
tion (28), we introduce the transformations in equation (9)
and use equation (8) to find

@ms =) — @)l Ve, (33)

We can obtain the same result by writing the local moment
tensor in common coordinates as

@ mk(;) Az(a) (@) NG (34)
Introducing equations (23) and (29) gives equation (33).

Contribution of the Macrodeformation to the Micropolar
Moment-Density Tensor. To obtain the contribution of the
local centroid deformation to the micropolar moment-density
tensor, we must take the average over the volume V of the
contributions from all the N events contained within V (equa-
tion 33), where V is large relative to the rupture radius of the
largest event contained within it but is small relative to the
scale of the deforming granular material body (Fig. 1). We
must have, therefore,

V> Ve = Ap@s@, (35)
where the right-hand side of the equation is from equa-

tion (29). Thus, the part of the micropolar moment-density
tensor contributed by the local centroid deformation is

1 & o
a=1

Introducing equation (33) gives

(d)Mkl = v Z{M(a) ﬁ(})nfc‘) (a)]<S m}ﬁ(a)ﬁ(a) V@,
(37)

We define the macrodisplacement gradient and the an-
isotropic volumetric macrodeformation tensor to be the aver-
age of local centroid displacement gradients at all the slip
surfaces oo = 1:N:
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1 « « « «
" Eﬁzui;m‘n’m Ve, (38)

|
by = TJZ ”flj)ﬁlm) (a)] © (a)V(”) = Py (39)
=

Equation (39) for the anisotropic volumetric strain accounts
for the possibility that the amount of volumetric strain may
be different along the different principal strain axes. Such a
difference could arise if the normal component of displace-
ment across the shear planes varies with the orientation of the
shear plane or if the shear planes have a preferred orientation
or both. We define a constant-volume deformation, which we
refer to as the isochoric macrodisplacement gradient, by

(NOC) Z{u(ﬂ) Efj)nfﬂ) 775”)]5 m}n(ﬂ) (@) /() (40)

k,m

Using equations (38) and (39) in equation (40) gives

(isoc) __

“kl = Mk,l_(bkl' (41)

The definition in equation (39) describes an anisotropic
volume change, which in general is unequally distributed
among the principal axes of strain. The isochoric macrodis-
placement gradient defined in equations (40) and (41), there-
fore, is not the same as the deviatoric macrodisplacement
gradient, which is defined by subtracting an isotropic mea-
sure of the volumetric deformation from the macrodisplace-
ment gradient

(dev) _
Up) = Upg—

ui’jéijék,. (42)
Clearly, the isochoric macrodisplacement gradient tensor is
the same as the deviatoric macrodisplacement gradient tensor
for the special case of isotropic volumetric deformation.

The first scalar invariant for both u ; and ®,,; defines the
total averaged volumetric deformation within the volume V;
therefore, this invariant for these two tensors must be equal.
Multiplying both sides of equations (38) and (39) by the Kro-
necker delta ¢;; and using equation (11) in the latter, it is easy
to show that ®;, = u;; as required.

From equations (40) and (41), we find

@M = U7 = u — Oy (43)

Thus, only the isochoric macrodeformation contributes to the
micropolar moment-density tensor ;) M.

We can write this part of the micropolar moment-density
tensor in terms of the symmetric average macrostrain e;; and
antisymmetric average macrorotation ry; by defining

R. J. Twiss
1 1
Cr = E(”k.l + Mz,k) = €k, T = E(uk,l - ul,k) = —Tlks
(44)
Upg = Uy T Uk = €+ Tigs (45)

where we used the notation defined in equation (3). Equa-
tion (43) can then be written
(d)/\/lk, = ey — Py + 1y (46)
The symmetric part of equation (46) is similar to the result
derived by Kostrov (1974, equation 3.11), except that Kos-
trov’s equation does not explicitly subtract out the aniso-

tropic volumetric component of the deformation, although
that restriction is implicit in his derivation.

Local Block-Rotation Components

Contribution of the Local Block Rotation to the Slip Vec-
tor. 'We now turn our attention to the component of partial
slip A¢® on S that is provided by the local block rotation.
We assume that the ath surface is a surface on the th block
so that the surface rotates with the block by an angle A"
about an axis through the centroid of the block. The orienta-
tion of the rotation axis is defined by the unit vector p'¥. For
the special case in Figure 2¢c p» = 1,. An orthogonal triad
of material unit vectors in the unrotated Sth block H;; @ (gray
lines in the blocks in Fig. 2a) is rotated with the block into the
orthogonal triad of material unit vectors hffi) in the rotated
block (gray lines in the blocks in Fig. 2¢), where

7 (5

ARHY = 6.
o ~(B
KRS = 6.

o
HRH R = 8,0,

~(8) 78
hf;k)h(xk) = Ok

47)

and where the deltas are all Kronecker deltas. The rotation
tensor for this local block rotation can be written as (see
Truesdell and Toupin, 1960, equations 37.1 and 37.2)

RO~ FOFDs,. GO —GOFDs . (48)
where for the coincident Cartesian coordinates that we em-
ploy, the deltas are Kronecker deltas. This local rotation ten-
sor R km can be expressed in terms of the rotation angle A9
about a unique unit vector p'® parallel to the rotation axis
through the centroid of the (th block (see Truesdell and Tou-
pin, 1960, p. 280 and equation 37.17). A0 is determined
up to a convention of sign and quadrant, and p® is deter-
mined up to the sign of the axis.

9%5(/2 = ,bff)pm)[l cos AGD] + 5mknpff) sin AGW
+ cos AGD 6y, (49)

where
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Emin = L9 % Lk”) L@ (50)

is variously called the alternating tensor, the permutation
symbol, the antisymmetric symbol, the Eddington epsilon,
or the Levi—Civita symbol; it takes values of +1 or —1 if
the subscripts {mkn} are, respectively, an even or odd per-
mutation of {123}, and it takes a value of zero if any two
subscripts are the same. We assume A§Y is positive if it is
a right-handed rotation about the positive direction of p(?,
and the order of subscripts on the alternating tensor in equa-
tion (49) ensures that the component Sﬁ(l“z) (and Iégg) defined
in equation 52) describes a positive right-handed rotation
about the 5;‘“ axis, as we illustrate in Figure 3 and in the
text following equation (55).

If A0 is very small then equation (49) becomes

R = e,V A0 + 8, if A0 < 1 radian (51)

because cos AP ~ 1 and sin AP ~ AGP) (radians).

We define the local instantaneous block-rotation ten-
sor by

D =R — S = Empnin DI = —RY)(52)
. (\ +A0"”
SY Y ~ ()
508 B » ' aD 1
~(B) ()
o LA §3
@ H; 3

Figure 3. A rigid rotation of the Bth block by an amount A#®)
about an axis parallel to the unit vector p», which is parallel to the
local coordinate axis f . The rotatlon rotates the material lines par-
allel to the unit Vectors HY ? and H into the orientations paral-
lel to h 7 and h < . The rotatlon is described by the component
of the r0tat10n tensor R}3, which is a component of the anti-

syl}lmetrlc part of the block-rotation displacement gradient tensor
~( )

85‘“’ This tensor defines the rotation of the block about its centroid:
R(l;) 2(31(‘(,, g”m,) The block-rotation displacement gradients

for materlal points in the [Sth block relative to the local coordinates

for the ath surface are of equal magnitude but opposite sign. Thus,
‘)kw _ 07— tan AYD) ~ NGO =
(23 9,

approxunatlon for tan AGY

= R§3), where we have used the
Vi AGPD < 1.
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which shows that I%,({Zf is antisymmetric. From equation (52)
we find the block-rotation increment is given by

1 ~
()]
= ek
2 Ekim

ml — 2 Eklmm(j (53)

/3](:”) AHD
For the special case in Figure 2c,
=[0 1 0] (54)

Thus, from equation (53) with (54),

PPN = AGO) =

3
*[5231R13 + 5213R( )]

1 -~
— 5 [R(lﬁ) R(J)]

PA0D = A0 = R = RV (55)
where for equation (55) we used equation (54) and the anti-
symmetric property of R ) from equation (52). If v, ) is the
internal block dlsplacement field that describes the local
block rotation of the (th block about its centroid (Fig. 3),
then for a local block rotation about an axis parallel to
L (@) (equation 54), R(ﬂ ) has the same sign as the local internal
block displacement gradlent av / 0¢&5. A positive value for
this gradient gives a positive rlght handed rotation about the
axis f)&‘/j) (Fig. 3).

We can now write the amount of slip on the shear plane
due to the local block rotation of the two blocks whose inter-
face is the ath shear plane. We assume the blocks are of equal
size so that each centroid is at a distance measured normal to
the ath surface of (A£(®/2), and we assume that each block
and, thus, the ath surface has the same rotation as just de-
fined for the (3th block. The partial slip AC® on the ath
surface due to the rotation of both blocks is, therefore, twice
the slip due to the rotation of one block. Thus, for the block
into which the unit normal n® points,

AL
2

(@)
_ (_A‘; Aé)(“))n(“) <P (56)

In equation (56), A#@ p(® is the local block rotation of the
ath surface. This surface rotates with the (Gth block for which
it is a boundary. Therefore, we have substituted the super-
script («v) indicating the ath surface for the (5) used previ-
ously for the fth block. The term 25> A9 is the distance
a point on the ath surface is translated by the rotation, and
1@ x p(® is the direction parallel to the ath surface, which
is normal to the rotation axis. Thus, equation (56) defines the
amount of slip parallel to the surface due to the component of
the rotation of the surface about the rotation axis of the block.
For example, if p(“) = L(za), a positive local block rotation
results in a slip that has the opposite shear sense to that
of a positive local centroid deformation (Fig. 2b, c¢). In com-
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ponent notation we can write the slip on the ath surface from
local block rotation using equation (56), as
ALY = eyl b MG AL, (57)

The slip components contributed by the local centroid
deformation, equation (18), and by the local block rotation,
equation (57), both depend linearly on the dimension of the
block AL, so the ratio of these two partial slip components
and the orientation of the complete slip vector do not depend
on the block size.

For the special case illustrated in Figure 2, the fourth
part of equation (11) and equation (54) require that the only
nonzero values of equation (57) are for

EImp = €132 = —L

Substituting this result into equation (57) shows that for this
special case the contribution of the local block rotation to the
slip vector on the ath surface is

A = [ -a00

0 0]AL® if Y =[0 1 0]

(58)

We can transform equation (57) into common coordi-
nates by using the transformations in equation (9) and then
simplify using equation (8) to find

AGY = ety o’ A0 AL, (59)
We can express this result in terms of the local instantane-
ous block-rotation tensor by transforming equation (52) into
common coordinates using the transformations defined in
equation (9) and recognizing that the alternating tensor
(equation 50) is invariant under orthogonal transformation.
We find

R = ¢V AQ@ = —R). (60)
Introducing equation (60) into (59) gives
AGY = RO AL = —RE i AL, (61)

Contribution of the Local Block Rotation to the Local Micro-
polar Moment Tensor. The contribution of the local block
rotation to the local micropolar moment tensor is (r)ﬂq(;;‘),
where the left subscript (r) identifies the rotational compo-
nent; it is given by an equation comparable to equation (27):

( ) s ((Y) Ac(ﬂ) ~(a) S(a) (62)
Using equations (57) and (29) in (62) and then using equa-
tion (52), we find

® mil) — gkmpni(f{lw)pp a) ~() AG(Q)V o) R(”)n(n)n(a) V(a)
(63)

R. J. Twiss

For the special case in Figure 2, for which we assume
equation (54), we see from the fourth part of equation (11)
that the only nonzero components of this part of the local
micropolar moment tensor are those for which the subscripts
take the values p = 2 and [ = m = 3, which because of the
alternating tensor (equation 50), requires k = 1. Thus, from
equation (63) we find for the special case in Figure 2

_ [)ga) Af@

~ () 0 V(o/)

Mk

(64)

S OO O oo

which shows that the component of the local micropolar mo-
ment tensor contributed by the local block rotation is defined
just by the local instantaneous block-rotation tensor.

We now wish to transform the components of the local
micropolar moment tensor from the local coordinates 5(“)
which are tied to the orientation of the slip plane, to the com-
mon geographic coordinate system x; so that we can add the
components from all the slip events in a volume. To this end
we use the orthogonal transformation defined in equation (8)
and the form for the transformation of a second rank tensor
in equation (9) with equation (63) to write the local block-
rotational component of the local micropolar moment ten-
sor as

(o) _ ()

" m = e pﬁla) () Ae(a) V(a) Rfr?k) nﬁ:ll) 7750) V(a) .

(65)

Contribution of the Microrotation to the Micropolar
Moment-Density Tensor. We now want to sum the local
block-rotational components of the local micropolar moment
tensors for all the N slip events in the volume ) to obtain
the local block-rotational contribution to the micropolar
moment-density tensor for the volume

(@)
My = Z M7 - (66)
Using equation (65) in (66) gives
1 &
(r)Mij = ]_} Z Eimnngr?),oga) §(I)A0(Q’) V(@
VZR(“) iy Ve, 67)

By analogy with the definitions for the macrodisplace-
ment gradient equation (38), we define the instantaneous mi-
crorotation by
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L= Z R(‘Y) (a) (@) V((y)

__ ! Z o A APV (68)

where we used equation (60) to find the second relation.
Equations (67) and (68) with equation (60) then give

oMy =Ry, (69)

It is not immediately obvious from equation (68) that
R;; is antisymmetric even though R is (equation 60). In
equation (68) the terms for each shear plane « are summed
over all N shear planes in the volume V on which slip events
have occurred. For sufficiently large N, we assume the sum
will include events on planes that have a similar distribution
of orientations to that for the surfaces surrounding an average
block. Thus, we can consider that the summation over a suf-
ficiently large number of events N is statistically equivalent
to the summation over all the bounding surfaces of a large
number of rigid blocks, and under those circumstances, R; |
approaches being an antisymmetric tensor (see Appendix B):

1 - (@), (@), (@)
- « (0% (0% ((,Y) ..
}llgll(Rl,) = 11]11>nl|: E lRim Mm 15V — Ry (70)

Thus, in the limit of a large number of events we have

Rij~=Rjis My~ =M, (71)

The Complete Micropolar Moment Tensor

The Complete Local Slip Vector. The complete slip vector
Av®@ on the ath surface (Fig. 2d) is the sum of the slip com-
ponents contributed by the local centroid deformation
(Fig. 2b) and the local block rotation (Fig. 2c¢):

AV® = Az® 4 A¢C@, (72)

In the local coordinates, the components of the complete
slip vector are given from equations (18) and (57) by

aa(ﬂ) 814( a)
~(a) _ _ ~ (@) ~ () ~() A p(a)
Av Uy {855;?) |:8§(Q) mon; j|5 }nm AL

+ EimpTin P AG@ AL, (73)

For the special case illustrated in Figure 2, these components
are, from equations (22) and (58),

~(a) _ i\
Ayla — [ ((%iu)

which shows that the complete slip is the contribution from
the local centroid deformation reduced by the contribu-

- AH(“)) 00 :|A€(“), (74)
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tion from the local block rotation if both contributions are
positive.

In common coordinates the expression for the complete
slip vector, as defined by equation (72), is found by adding
together equations (23) and either (59) or (61):

Ao = {uily, = g 10 Vo’ AL
+ Ekmjnﬁr?)pgu) AH AL , (75)
Aol = MEOGanly G =) = Rl (76)

In deriving equation (76), we used the antisymmetric prop-
erty of Rf:f,? (equation 60) to keep subscripts in a consis-
tent order.

We can express the components of the complete slip
vector as a scalar magnitude Av(® times the components
of a unit vector 1/,((“),

Av,ﬂ”) = Av(o‘)uff'), Ap©@ = [Avi“)Av,((a)]l/z,
(@) (77
o _ Av YO = 1 )
k= Ap@” k ’

whereby we can solve equation (76) for the components of
the unit vector that parallels the slip direction:

(@ _ AL

W =tw (D G — )]~ R (78)

Then, separating the local centroid displacement gradients
and local block rotations in equation (78) into symmetric and
antisymmetric parts using the notation in equation (3) gives

AZ(Q) Y C Y Y
A = 1 D G = 0] + gl — R,
(79)

where we have used the fact that the scalar product of an

(@) (@), (@)
antisymmetric tensor u; ,, with a symmetric tensor 7; 1
must be zero.

For future convenience in comparing this result with the
result from the continuum micropolar analysis (Twiss et al.,
1991, 1993), we note that, by using the symmetric property
of uglal)ﬂ) and the antisymmetric property of u[(,f in] and R(a)
(equation 60), we can also write equation (79) in the form

o A [0} [0} (&} o (e}
o = B uio)o i = ] + R — ule ke

Ap@
(80)

The Complete Local Micropolar Moment Tensor. The
complete local micropolar moment tensor is obtained for
the discrete-block model by summing the contributions from
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the local centroid deformation and the local block rotation
for a single slip event. In the local coordinates 5,(:’) for the
ath event, we have

"‘((l) (@)~ (f)
m,y = A pY SO,

iy = [AZ7 + AL 5@, 81)
~() ~ () ~( )
k(ll = (d)mk(; + a .

Each of these three equations leads to the same result: Using
the first part of equation (81) with (73) and (29), or using the
second part of equation (81) with equations (18) and (57), or
using the third part of equation (81) with equations (28) and
(63)—each gives

~(a) _ {3ﬁ§<”) ~(a)~(a) [5% -~ (a)~ (a)} - (0) ~(a)

m = o) 'Im « nn e M
ki 855,1 ) 1 85; ) J k'
+ [skmpniz“)pﬁf”} §Q’A0<“)}v<“>. (82)

Then using equation (63) gives
i [au }
@ — k_>(@)~(a) (@) ~(@) [~(a)~(a)
=Y m'n o i Ny | T
My { P 521 ) I P f( ) i "k

- R v, (83)
For the special case illustrated in Figure 2, we use the fact
that ﬁgu) = 0 along with the fourth part of equation (11) and

equation (54) in equations (82) and (83) to find the compo-
nents of the complete local micropolar moment tensor

o\

0 0 (Gky— AG@)
i =loo W0 |V
L0 0 0
B o' a
0 0 (aélm ( ))
L0 0 0

The symmetric and antisymmetric parts of this tensor in
the local coordinates are

| (i, ()
i(ag(u) _R]('iy)

0
) = . 0 0 Ve, (85)
2( ”1 _ (CY)) 0 0
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()
0 0 % 35(“ 13
) = 0 0 0 4C
oa" (@
_2(3531 —Rlz) 0 0
(86)

In the common geographic coordinates, the first and third
parts of equation (81) have the forms

m](:lk) — Ayl(ca)n;(y)s(a)’ (87)
(@) _ () ()
my’ = (d)mkr; + (r)mk(;' (83)

From equations (75) and (76) with (87) and (29) or from
equations (33) and (65) with (88), we find

m = i i — w0\ n v

+ [gkmnnm Pn )]nga) A@(O) V(a)’ (89)

m](c?) — {“1((0;7)177;? nga) [ufi)nfa) (a)]n(a) (a)}V(a)

— R Ve, (90)
Separating the complete local micropolar moment tensor
into symmetric and antisymmetric parts with respect to the

indices k and [/ and using the notation defined in equa-
tion (3) gives

mkl = {M(k mn(a)ng)a)

— R WV 4 {[ulg), — Rl v,
oD

R U

where the term in the first set of braces {...} is the symmetric
part and the term in the second set of braces {...} is the anti-
symmetric part.

Equation (91) defines the complete local micropolar mo-
ment tensor for a single seismic event, which includes the
effects of both a local centroid deformation and a local block
rotation. It is clear from the form of this equation that this
tensor is asymmetric. Furthermore, equation (91) and its
form for the special case of Figure 2, which is given in
the local coordinates by equations (85) and (86), make it
clear that the symmetric part of the local micropolar moment
tensor for an individual seismic event is affected by the anti-
symmetric local block rotation R,m In essence, both the
local centroid deformation and the local block rotation con-
tribute to the slip on the fault plane, and this slip is the
essential term in the definition of the classical symmetric mo-
ment tensor for a single slip event. Because the orientation of
the seismic P and 7 axes for the standard focal mechanism
solution is based on an assumption of a symmetric moment
tensor for each event, equation (91) shows how the orienta-
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tions of those axes include information about the local block
rotation.

The Complete Micropolar Moment-Density Tensor. The
complete micropolar moment-density tensor M, is simply
the volume-averaged sum of the local micropolar moment
tensors, which are contributed by the local centroid deforma-
tions and the local block rotations within that volume. This
sum can be expressed in a number of ways, all of which lead
to the same result:

My = .2 Z e (92)
From equations (92) and (87),
My = 1%%&“’%@3@ (93)
Vi
From equations (92) and (88),

My Z[(d) mkl + (r)m(&)] %94)

From equations (93) and (72),

N

1 a (e} «
=52 1A + AGTS@. (95)

From equations (94), (36), and (66),
Mk] - (d)Mkl + (r)Mk]' (96)
Using equation (92) with either (89) or (90); or using
equation (93) with either (75) or (76) and (29); or using equa-
tion (94) with (33) and (65); or using equation (95) with (23)
and either (59) or (61); or using equation (96) with (37) and
(67), we find the same result for the complete micropolar
moment-density tensor:

1 u « (&) (&) @ @ (&3 (&% «
Mg = 353 Al ) = G o )

+ St P17 ARV, 07)

1 X C C C 3
Mas = 35 2 s i = i)
= R v, (98)

Introducing equations (38), (39), and (68) into equa-
tion (98) gives

My = (Mk,l — &) — Ry 99)
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This result is identical to the result we get from equation (96)
with equations (43) and (69).
Then, using equation (45) in equation (99), we find
My = (e —

Q) + [ru — Rl (100)

where the parentheses (...) and brackets [...] contain the
symmetric and the antisymmetric parts of the tensor, respec-
tively. This equation shows that, in averaging the complete
local micropolar moment tensor over the volume V (equa-
tion 92 with 91), the dependence of the symmetric part of
moment-density tensor on the local block rotation drops
out, because the average of the local block rotations is anti-
symmetric (equations 70 and BS).

For later convenience in comparing these results with
those of the continuum micropolar model, we define the
transpose of the micropolar moment-density tensor:

MZIEM”(' (101)

Using equation (100) in (101), and then using the
symmetry of the macrostrain tensor (equation 44) and the
antisymmetry of both the macrorotation (equation 44) and
microrotation tensors (equations 71 and BS5), we find

My = (ex — i) + [Ryy — 1l (102)
Thus, the symmetric part of the micropolar moment-density
tensor is the isochoric macrostrain, and the antisymmetric
part is the relative rotation. Because the relative rotation is
the difference between two rotations (specifically, the macro-
rotation and the microrotation), it is an objective quantity,
which means that it is independent of the translation or rota-
tion of the coordinate system in which it is described.

Comparison of the Discrete-Block and Continuum
Models of Deformation

In the subsequent discussion, we compare the results
from the continuum micropolar and the discrete-block mod-
els of the deformation in materials with substructure. We use
an overbar on the symbols for the continuum micropolar
variables to distinguish them from similar symbols for com-
parable variables used in the discrete-block analysis.

Comparison of the Slip Vectors. In the continuum micro-
polar analysis, the unit vector () is parallel to the slip ve-
locity vector on the ath shear plane, for which the unit
normal is 9@ It is calculated by (Twiss et al., 1993, from
their equations 7 and 9)

n(a) (w)] + (e — ka)77k }
(103)

1

- (@) (@)

Upm = —= d M Opm —
L{ ki [l

The quantity in braces {...} defines the components of the
slip velocity vector per unit distance normal to the shear
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plane, and L is the magnitude of that vector. d,; and Wy, are,
respectively, the macrodeformation rate tensor and the
macrospin tensor, which are the symmetric and antisym-
metric parts of the macrovelocity gradient tensor, and wy,,
is the microspin tensor. These tensor rates, when multiplied
by an infinitesimal increment of time dt, yield the macro-
strain, macrorotation, and the microrotation, respectively:

ey = ey = dy dt, Py = —Iy = Wy dt,
B (104)
R = —Ry = Dy dt,
where the macrodisplacement gradient is given by
U = ey + ry. (105)

Thus, multiplying the right-hand side of equation (103)
by dt/dt and using equation (104) gives
Z i)+ R = P
(106)

[ (@)
= =€ 5m_
Ldt{ kiTlk [0,

We see that equation (106) for the continuum model has
exactly the same form as equation (80) for the discrete-block
model if

Av(a)

Equation (107) equates two dimensionless expressions de-
fining the magnitude of the local centroid displacement
per unit distance normal to the slip surface. The left-hand
side is for the discrete-block model; the right-hand side is
from the continuum micropolar model. The difference be-
tween equations (80) and (106) and between the two terms
in equation (107) is that, for the discrete-block model, the
symmetric and antisymmetric parts of the centroid displace-
ment gradient and the block rotation are all the local quan-
tities associated with the particular slip event. For the
continuum model, however, the macrostrain, macrorotation,
and microrotation are in effect the volume-averaged quanti-
ties, which are defined by equation (38) with (44) and (45)
and by equation (68). Thus, on average we expect

U~ o, (108)
and the present discrete-block model gives essentially the
same result as the earlier continuum model. The present ap-
proach, however, provides an explicit physical model by
which the micropolar kinematic variables associated with
slip on a specific shear plane can be associated with the mi-
cropolar moment tensor, as detailed in the following analysis.

Comparison of the Continuum and Discrete-Block Models
for the Local Micropolar Moment Tensor. The local micro-
polar moment tensor for an individual event is defined in the
continuum micropolar model by

R. J. Twiss

A = OO = RO gl
(109)
Mé") = \@s@,

M is the local scalar geometric moment, 7" and 7\ are
unit vectors parallel, respectively, to the slip d1rect10n and the
normal to the shear plane, and A ig the magnitude of the
slip vector averaged over the area S®) of the ath shear plane.
The classical seismic moment tensor for a single seismic
event is just the symmetric part of the micropolar moment
tensor multiplied by the shear modulus .

For the continuum model, we use equation (106) in
(109) to find

—(@) ()

my, {em/nm)[(sjk N Mk )]77(&)

+ (Rt = P “”} s<a> (110)

We can use the symmetric properties of the macrostrain
tensor and the antisymmetric properties of both the macro-
rotation and microrotation tensors (equation 104), and then
adjust the letters that are used as dummy indices, to rewrite
equation (110) as

Y = (e’ n® — (@mn “'))n;ﬂ”)nﬁ“)]

+ (Fiom — Rien) " “”}- S<”> (111)

The local micropolar moment tensor for an individual event
on the ath shear plane is given for the discrete-block model
by equation (90), which can be rewritten for comparison with
equation (111) as

mkl _ {[”(g,)n)??f#) 77Ea) (MEZ)) nl(u) nﬁu))nl({a) nga)]

+ [ — R Vs n ™ }v @) (112)
Using equation (29) in equation (112), we see that equa-

tions (111) and (112) have the same form if

(113)

Equation (113) is consistent with the definition in equa-
tion (107) with Ap@ = X\,

Equations (111) and (112) differ in that the strains and
rotations in equation (111) are the average quantities for
the continuum, whereas in equation (112) they are the local
values for the slip on the specific ath shear plane. To the
extent that the local strains and rotations differ from the aver-
age, the equations are not quite the same, but this difference
between the two models disappears when we average the in-
dividual local events in the discrete-block model over all the
events in a volume to compare the micropolar moment-
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density tensors for the continuum micropolar model and the
discrete-block model, as we show in the next subsection.

Comparison of the Continuum and Discrete-Block Models
for the Micropolar Moment-Density Tensor. The micro-
polar moment-density tensor for the continuum model is de-
fined, analogous to equation (92), by

1 N

M= 5.

a=1

(114)

Introducing equation (111), using equations (113) and (29),
and rearranging the terms gives

My == Z{[ekmnfn”) ™ = @m0

+ (;k171 7757?) 77;&)

Rintiin 1)}V, (115)
We assume that the summation over a sufficiently large
number of events N is statistically equivalent to the sum-
mation over all the bounding surfaces of a large number of
rigid blocks. We can then use equation (A21) to show that
the averages of the continuum macrostrain, macrorotation,
and microrotation terms in equation (115) are simply the
continuum macrostrain, macrorotation, and microrotation

themselves:

I
a=1
= ﬁk.méml = ”_tk,l’ (116)
1 z (O)V @) {1 (04) a)v(a)}
ekmnm m = ek Tm
V(y:l V(z 1
= €mOmi = €xs (117)

@)),'7]((04) ,'7504) V@

%Z(ﬁz i

- { Zw(“)nﬁ))ni“’nﬁ“’v(@}zék,, (118)

_ Z Fim 77(04) ;04) V(a)

;km{ Zn(a (@) V(a>}

= FiemOmi = Tus (119)
1 N
Zkanm Ve = ka{ > ’n?a)V(“)}
a=l1
= kkméml = 7_?’/(1' (120)
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Using the definitions in equations (117), (118), (119),
and (120), equation (115) for the continuum model can be
written

My = (e — D) + [Fu — Rudl. (121)
where the terms in the parentheses (...) constitute the iso-
choric macrostrain and the terms in brackets [...] consti-
tute the relative rotation. We can also write the left-hand side
of equation (121) in terms of the transpose of the moment
tensor:

My = My = (g — ) + [Fye — Ruel. (122)
Using the symmetry of e, and ‘i{lk (equations 104 and 118)
and the antisymmetry of 7, and R, (equation 104), we have

Mg = (e — T3 + [Riy — Ful- (123)

Equation (123) is the same as the micropolar moment-
density tensor for the discrete-block model (equation 102).
Thus, the continuum and the discrete-block models give
identical results for the volume-averaged quantities, because

R = Ry
(124)

€kl = €kl» Dy = Dy, Tkt = Tkl

Relation of the Continuum Relative Vorticity Parameter to
the Micropolar Moment-Density Tensor. In the continuum
micropolar model, the relative vorticity parameter vector is
defined as

Wk Ekml (wlm _A Wlm)

dy -

(125)

(Twiss et al., 1991, equation 10.2; Twiss et al., 1993, equa-
tion 10), where w is the microvorticity tensor, w is the macro-
vorticity tensor, and d is the deformation rate tensor. d and w
are, respectively, the symmetric and antisymmetric parts of
the macrovelocity gradient tensor. The circumflex (hat) on
the variables indicates that the components are given in the
principal coordinates of the deformation rate tensor d. In ap-
plications, we have used only the component of this vector
parallel to the (}2 principal axis, which we refer to as the rela-
tive vorticity parameter,

52m1(wlm - Wlm) @13 W13)

dy — d; 0.5(dy — d3)

W=W,= (126)

The relative vorticity parameter is defined in terms of the
rates of the kinematic variables. Thus, if we multiply the top
and bottom of equations (125) and (126) by dt, we can con-
vert the definition to the instantaneous kinematic variables,
as defined in equation (104):
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v — Ekml(ajlm B L:Jlm)dt

Wk ~ ~
(dy — d3)dt

’

(R — 713)
0.5(e, — e3)
(127)

W — Ekml(le — flm)

k = z s WZ
(ey —e3)

Using equation (124), the relations for the relative vorticity
parameter in equation (127) can be written in terms of vari-
ables derived for the discrete-block model as

(Ry3 — F13)
0.5(6, — é3)°

Wk _ Ekml(j?'lm A— Fim) ’ W=
(€1 —e3)

where the superposed circumflex indicates components in
the principal coordinates of the macrostrain e;;, which is de-
fined for the discrete-block model by equation (38) with (44).
We can now examine how the results in equations (127)

and (128) are related to the micropolar moment-density ten-
sor for the discrete-block model. The axial vector associated
with the antisymmetric part of this moment tensor is given by

(128)

g R n R R
erjiMij = enji(eyy — i) + &l Rij — 7yjl-

Because (¢;; — é),-j) is symmetric with respect to ij and g j; is
antisymmetric with respect to ij,

EkjiMiTj = erjilRij — Fijl- (129)
Thus, from equations (128) and (129) the relative vorticity
parameter vector is related to the moment tensor by
T
W, = Mo (130)
(€1 —e3)

This same relationship also holds if we rewrite equation (130)
using the equivalent variables from the continuum micro-
polar model, because the micropolar moment density and
the strain tensors for the discrete-block model and the con-
tinuum model are equivalent (equations 102, 123, and 124).

Thus, the relative vorticity parameter vector is the axial
vector defined from the antisymmetric part of the trans-
posed micropolar moment-density tensor, normalized by
the maximum instantaneous shear, where the components
are specified in the principal coordinates of the instantaneous
macrostrain ey;.

For the second component of the relative vorticity pa-
rameter vector, setting k = 2 in equation (130), we have for
the discrete-block model

AT AT AT
82]-,-./\/lij _ M13 - M31

W=W,=_F "9 =""3 =
? (e; —e3) (€1 —e3)
> T > T
0.5(61 —(33)

R. J. Twiss

Evidence for Nonrecoverable Micropolar Effects

I and my colleagues Jeffrey Unruh and Jonathan Lewis
have studied the seismogenic strain in numerous seismi-
cally active areas by inverting seismic focal mechanisms and
fault-slickenline data using the computer program FLTSLP
(written by Twiss and Guenther), which incorporates the mi-
cropolar theory in the inversion. An inversion solution con-
sists of the orientation of the principal strain rate axes d;, or
equivalently the principal instantaneous strain axes ¢;; their
relative magnitudes given by the deformation rate parameter,
or equivalently the instantaneous strain parameter D,

DE‘?Z_%:%_%; (132)
d, —ds

¢ — &3

and the relative vorticity parameter, or equivalently the rela-
tive instantaneous rotation parameter (W), which are defined,
respectively, in equations (126) and (128). For convenience,
we drop the overbar notation in this section as we have
shown that the distinction between the micropolar continuum
model and the discrete-block model is no longer required.

Our inversions very commonly give nonzero values of
the relative vorticity parameter W that are statistically signif-
icant at the 95% confidence level. This parameter, therefore,
appears to reflect a real kinematic characteristic of the seis-
mogenic deformation, which we interpret to be the indepen-
dent rotations of the fault blocks in the fault zone. We have
searched specifically for areas in which we can make inde-
pendent tests of the inferred block rotations, and we review
here results from three such areas in California (Fig. 4).
These areas, all of which are dominated by dextral strike-slip
faulting, are the 1992 Landers earthquake aftershock se-
quence in the eastern California shear zone in the Mojave
desert (Unruh et al., 1996); the 1989 Loma Prieta earthquake
aftershock sequence along the San Andreas fault in the Santa
Cruz Mountains south of San Francisco Bay (Twiss and
Unruh, 2007); and the deformation in the Coso Range east
of the Sierra Nevada between Owens Valley and the Garlock
fault (Lewis et al., 2007).

Individually, the results from these three studies do not
provide conclusive proof of the theory. This is in part be-
cause of the lack of quantitative data that permit an indepen-
dent determination of the relative vorticity parameter and in
part because of the insufficient resolution of available quan-
titative data. Taken together, however, the consistency of the
results from all these studies with the micropolar model pro-
vides stronger support for the theory than any of the results
considered separately. I briefly describe these three examples
in turn.

The 1992 Landers Earthquake Aftershock Sequence

Unruh et al. (1996) inverted clusters of aftershock fo-
cal mechanisms from the 1992 Landers earthquake zone
(Fig. 4). The inversion for aftershocks along the Kickapoo
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Figure 4. Index map of California faults highlighting the lo-
cations of the 1992 Landers aftershocks, the 1989 Loma Prieta
aftershocks, and the Coso Range, as discussed in the text (see
the Data and Resources section).

fault (Fig. 5) gave values for the instantaneous strain pa-
rameter D = 0.5, implying a plane strain, and for the rela-
tive rotation parameter W = 0.4 about a positive-down axis
(Fig. 5a). Subsequent to our analysis of the Landers after-
shocks, we added to our inversion program the capability
of evaluating the confidence limits for the inversion pa-
rameters. Inversions of focal mechanisms from other areas
suggest that the 95% confidence level for D and W are, re-
spectively, approximately £0.15 and £0.3 (e.g., Twiss and
Unruh, 2007, fig. 11B). Thus, we infer that the value of W on
the Kickapoo fault is significantly different from zero. For a
dextral shear zone such as is represented by these faults, the
macrorotation is positive about a positive-down axis (clock-
wise looking down). A positive value of the relative rotation
parameter then implies that the clockwise rotation of the fault
blocks exceed the macrorotation associated with the macro-
shear along the faults.

The results for the relative rotation parameter can be
compared with the geometry and kinematics of fault blocks
in the fault zones based on mapping of surface fractures. In
Homestead Valley, Sowers et al. (1994) mapped shear zones
and zones of extension fractures trending roughly north—
south to northeast—southwest within a 2.5 km wide stepover
between the Johnson Valley fault to the south and the Home-

stead Valley fault to the north (Fig. 5b). The stepover is
bounded on the northwest side by the Kickapoo fault and
on the southeast side by a northeast—southwest trending zone
of surface fractures (Fig. 5). Near the Johnson Valley fault is
a 1 km wide zone of shearing including a number of distinct
shear zones. The kinematic significance of these structures is
suggested by similar structures having a scale of up to tens of
meters, mapped by Johnson et al. (1993) along both the
Johnson Valley fault and the Homestead Valley fault. They
showed that north-northeast trending fractures had sinistral
offset, and they inferred that the surface fractures and kine-
matic indicators implied a clockwise-looking-down rotation
of the fault blocks within the shear zones, as well as a com-
ponent of extension normal to the dextral faults.

The ground-based mapping can be compared with the
results of the inversion of the aftershock focal mechanisms
if we assume that the geometry and kinematic significance of
the surface fractures reflects that of the faults at the depths of
the inverted aftershocks. For the observed angle o &~ 135° to
150° between the long dimension of the rotating blocks and
the shear zone (Fig. 5b,c), a pinned-block model of fault
blocks rotating in a shear zone (Twiss et al., 1993) gives
values of the instantaneous strain parameter D and the rela-
tive rotation parameter W of (D, W) = (0.36,0.45) and
(0.44, 0.28), respectively (Fig. 5a). These values are con-
sistent (within the inferred confidence limits) with the in-
version solution for the aftershocks along the Kickapoo fault
(Fig. 5a).

Despite the consistency between the results from the in-
version of aftershock focal mechanisms and the geometry
and kinematics of the mapped faults, the conclusiveness
of these results as a test of the micropolar theory has two
limitations. First, independent quantitative measures of the
macrorotation and the microrotation are not available, so an
independent value of the relative vorticity cannot be deter-
mined. Second, although the pinned-block model for fault-
block rotation in a shear zone provides the best fit of the
models considered by Twiss ef al. (1993) and Unruh et al.
(1996), the pinned-block model for block rotation is not
unique, and there are no independent constraints on what
the most appropriate model should be.

Loma Prieta Aftershock Sequence

Twiss and Unruh (2007) made a detailed study of the
aftershock sequence of the 1989 Loma Prieta earthquake,
which occurred along the San Andreas fault system in central
California (Figs. 4 and 6a). We divided the focal mechanisms
for over 1100 aftershocks into 17 volumetrically defined
clusters and subdivided these clusters into a total of 34 sub-
sets, defined by the requirement that each subset reflect a
homogeneous deformation. The inversions provided the ori-
entations of the principal instantaneous strains, their relative
magnitudes as defined by the instantaneous strain parameter
D, and the instantaneous relative rotation parameter W mea-
sured about the intermediate principal strain axis. The kine-
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Figure S.  Part of the fault system involved in the 1992 Landers earthquake. (a) Micropolar solution for the Kickapoo fault. The stereo-
gram shows the aftershock inversion solution for the orientation of the principal lengthening (d,) and shortening (d5) axes (lower hemisphere,
equal area projection). The graph shows solutions for the relative instantaneous rotation parameter W versus the instantaneous deformation
parameter D. The black plus indicates the value inferred from inversion of aftershocks along the Kickapoo fault. The gray bands (after Twiss
and Unruh, 2007) illustrate the probable 95% confidence limits. The fine plus marks show the values of D and W calculated from the pinned-
block model of Twiss er al. (1993) for the observed angle « between the shear zone and the fault blocks. (b) Geometry of fault blocks in part
of the aftershock zone near the intersection of the Kickapoo, Johnson Valley, and Homestead Valley faults (after Sowers et al. [1994] and
Unruh et al. [1996]). The fault blocks in the stepover between the Johnson Valley fault and the Homestead Valley fault make an angle o ~
135°to 150° with the shear zone boundary. (c) A highly idealized model of fault blocks in the map in part (b). The stepover is in a dextral fault
system. Clockwise rotation of the fault blocks in the stepover requires sinistral slip on the north-northeast striking faults.

matic environment for the aftershock zone as a whole is a shallow zone above about 5 km depth, which is above the
convergent dextral strike slip, with strike slip dominant in upper tip line of the main fault.

the southern part of the aftershock zone, dextral-reverse slip The principal axes of instantaneous shortening e; are
dominant in the northern part, and reverse slip dominant in a oriented north-northeast—south-southwest subhorizontal for
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1989 Loma Prieta fault aftershock sequence (after Twiss and Unruh, 2007). (a) Location map showing the epicenters for more

than 1100 aftershocks for which focal mechanisms are available. The faults on the base map are taken from Jennings and Saucedo (1994).
(b) Collected solutions to subsets showing the point maximum for the axes of maximum shortening d3, and the girdle normal to that maxi-
mum for the axes of maximum lengthening d;. Lower hemisphere, equal area projection with Kamb contours at intervals of 20 above
uniform. (c) Magnitudes of the relative instantaneous rotation parameter W parallel to the axis of intermediate principal instantaneous strain
d,, plotted as positive-down. Positive, near-zero, and negative values of W are distinguished by symbol and fill color. For vectors that have a
plunge steeper than 50° (within the dashed small circle) and a significantly nonzero value of W, the sign of W is positive for five out of six.

Lower hemisphere, equal area projection.

most of the inversion solutions (Fig. 6b). The principal axes
of instantaneous lengthening ¢, define a girdle normal to the
common shortening axis with weak maxima in the girdle that
are oriented subhorizontal and subvertical. The solutions for
which the principal shortening and lengthening axes are both
subhorizontal, reflect dominantly dextral strike slip on the
faults and, therefore, a positive (clockwise) macrorotation
about a positive-down intermediate principal axis. For those
solutions with an intermediate principal axis plunging at
greater than 50°, six have a value of the relative rotation pa-
rameter that is nonzero at the 95% confidence level. Of these
six, five have a positive value of W (Fig. 6c¢).

Dextral strike slip is the dominant macroshear along this
fault, and it is therefore associated with a steeply plunging
intermediate principal strain axis. Thus, we would expect the
instantaneous relative rotation parameters W to be most con-

sistent for solutions having a steeply plunging intermediate
principal strain axis. The results (Fig. 6¢) show the expected
consistency and indicate that block rotation of fault blocks in
the shear zone generally exceeds the macrorotation of the
dextral shear in the macrocontinuum.

This consistency supports the micropolar model of
block rotation in the shear zone, but because we do not
have the information to determine independently the instan-
taneous relative rotation parameter W or the fault block ge-
ometry, the consistency provides only permissive, but not
conclusive, support for the theory.

Coso Geothermal Area

The Coso Range in east central California south of the
Owens Valley (Figs. 4 and 7a) has provided us with the best
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o Epicenter <5 km depth
+ Epicenter >5 km depth
% Fault-slickenline data site
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1R Paleomag data site
(with relative rotation)
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Figure 7.  Coso Range (after Lewis et al. [2007]). (a) Map showing the location of the Coso Range in east central California and of Wild
Horse Mesa within the Coso Range. Labeled open dots are the GPS stations of McClusky ez al. (2001). The triangle with vertices at three of
the GPS stations is cell 34 of Lewis et al. (2007), which includes Wild Horse Mesa. The letter X labels the locations in Petroglyph Canyon and
Sheep Canyon where the fault-slickenline data were gathered. Stars show locations from which the paleomagnetic orientations were de-
termined; curved arrows around the stars show the paleomagnetic rotation of lavas in the fault stepover relative to the same lavas outside the
stepover, which averages 12.0° £ 2.6°. Solid diamonds and open squares show the epicenters of earthquakes at greater than and less than
5 km depth, respectively; the focal mechanisms from these events were inverted for a solution of the local deformation. (b) Stereogram
showing the orientations of the axis of maximum rates of lengthening (d;) and shortening (d5) inferred from the inversion of fault-slickenline
data and from the inversion of GPS velocity data from the triangular cell shown in part (a). The boundary of the shaded areas is the locus
of zero instantaneous extension. Lower hemisphere equal area projection. (c) Values of the deformation rate parameter D and the rela-
tive vorticity parameter W inferred from two independent methods: first, from the inversion of fault-slickenline data; and second, from
the inversion of GPS velocities for the vertices of the triangular cell in part (a), which defines the macrovorticity and the maximum macroshear
rate, and from the paleomagnetically determined block-rotation rates, which define the microvorticity.
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opportunity that we have found to do an independent test
of the micropolar interpretation of block rotation in a shear
zone. The area is an active geothermal area that lies within
the China Lake Naval Weapons Station. The geothermal en-
ergy powers an electrical power generation plant, and the
Geothermal Program Office of the U.S. Navy, until recently
headed by Frank Monastero, has sponsored a remarkable se-
ries of studies to improve the understanding and management
of the geothermal resource.

Among the many studies of the Coso area have been
Global Positioning System (GPS) studies of the displace-
ments in a network of stations that span the Coso Range
(Fig. 7a, McClusky et al., 2001); studies of the paleomagne-
tism recorded by multiple flows of young lavas in the Coso
Range (e.g., Pluhar, 2003; Pluhar et al., 2005); geochronol-
ogy of the lavas (Duffield et al., 1980; Pluhar, 2003; Pluhar
et al., 2005); seismic studies, which have produced a large
catalog of focal mechanisms (e.g., Hauksson, 2000); and
field studies of fault-slickenline data (Lewis et al., 2007).

Lewis et al. (2007) undertook a comparison of the de-
formations inferred from these different sources of data for
an area that is centered on Wild Horse Mesa in the Coso
Range (Fig. 7a). This area lies in a right stepover in a dextral
fault system, and it is characterized by a system of elongate
fault blocks bounded by normal faults. In principle, a com-
plete independent test of the micropolar inversion solutions
for either the focal mechanism data or the fault-slickenline
data is possible by using the GPS studies to define the macro-
strain rate and the macrovorticity and by using the paleomag-
netism with the geochronology to define the microvorticity
for the block rotations. The value of D can be calculated from
the principal values of the macrostrain rate (equation 132),
and the value of W can be calculated from the difference be-
tween the microvorticity and the macrovorticity, normalized
by the maximum shear rate (equation 126).

To apply the test, two assumptions are fundamental:
first, the GPS data, the micropolar inversions of both focal
mechanisms and fault-slickenline data, and the paleomag-
netically defined rotations all must describe aspects of the
same deformation, and second, the deformation rate must
be steady across the time spans over which the average rates
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for the different measurements are determined. These time
spans vary from a few years or less, which is the time typi-
cally taken to accumulate both the GPS measurements and
the catalog of seismic events, to times of up to 2 or 3 Ma,
which is the time over which the paleomagnetically deter-
mined rotations have accumulated and presumably the time
during which the fault slickenlines developed.

Inversions of the focal mechanisms define two distinct
solutions that separate the seismic events into a shallow zone
above 5 km depth, in which faulting is dominantly normal
faulting, and a deeper zone between 5 and 8 km, in which
faulting is dominantly dextral strike slip. The two solutions
share a common orientation of the maximum extension €, of
about [plunge, trend] = [15°, 257°] (68% confidence limits
~10°). Inversions of the fault-slickenline data define three
different solutions; of the three, the most well defined is
predominantly dextral strike slip with a component of ver-
tical shortening (crustal thinning). The orientation of ¢, is
[12°,246°] (68% confidence limits ~~11°, Table 2), very simi-
lar to the focal mechanism inversion solutions. The other two
fault-slickenline solutions are a normal faulting and a thrust
faulting, neither of which is as well defined as the strike-slip
solution.

The deformation was determined independently from
the GPS data by dividing the area into a network of cells
using the GPS stations as the vertices. The measured veloci-
ties at the vertices were then inverted for the strain rate and
rotation rate within each cell. The principal strain rates are
presumed to be horizontal and vertical, and the vertical com-
ponent is determined from the measured horizontal compo-
nents assuming a constant-volume deformation. The GPS
solution for the Wild Horse Mesa area was obtained by in-
verting the GPS velocities from the triangular cell that in-
cludes Wild Horse Mesa near its center (Fig. 7a, cell 34
of Lewis et al., 2007). The solution shows a dominantly
dextral strike-slip deformation (Fig. 7b) with ¢; oriented
[00°,269°] (68% confidence limits = 6°) and with a compo-
nent of crustal thinning (D = 0.09 + 0.27/ — 0.09, Table 2;
Fig. 7¢). Because this cell is large relative to the fault blocks
in the mesa, this solution defines the macrostrain rate and
macrovorticity for the area.

Table 2
Test of the Fault-Slickenline Inversion Solution with GPS and Paleomagnetic
Data for the Wild Horse Mesa Area in the Coso Range,
East-Central California (from Lewis et al., 2007)

Fault-Slickenline Inversion Solution”

GPS/Paleomag Solution’

L% 1 [plunge, trend]

[12°, 246°] (12° 10°)

[00°, 269°] (6°)

d, [plunge, trend] [62°, 132°] [90°, 000°]

523 [plunge, trend] [24°, 343°] (38°; 6°) [00°, 359°] (6°)
D 0.15 (4+0.13; —0.10) 0.09 (4+0.27/ — 0.09)
w 0.56 (40.16; —0.15) 0.44 (£0.35)

“Error (given in parentheses) is the maximum and minimum deviation of the
68% confidence limit from the solution, based on the solutions to 2000

bootstrap data sets.

"Error (given in parentheses) is the 68% confidence limit.
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The microrotation in the shallow crust within the fault
stepover is defined by the paleomagnetic rotation of the lavas
in the fault blocks on Wild Horse Mesa (Fig. 7a) relative to
the same lavas outside the fault stepover. The paleomagnetic
data represent a cumulative relative rotation of 12.0° £ 2.6°
(6% confidence limits) over a period of at most 3.5 Ma,
which is the maximum age of the lavas. The actual duration
of the deformation associated with the rotations, however, is
not well constrained, although Monastero ef al. (2002) have
proposed that the divergent dextral shearing could have
started as late as 2 Ma. Thus, the microvorticity calculated
using the paleomagnetic rotation and the age of the lavas is
subject to considerable uncertainty.

The inversion solutions from the seismic focal mecha-
nism data cannot be tested directly against the GPS and
paleomagnetic data. For the focal mechanisms below 5 km
depth, the deformation is dextral strike-slip faulting like the
GPS solution. But, the geometry of the fault structures is not
known, and there are no independent data that determine the
kinematics of block rotation. Thus, the microrotation, and
thereby the relative vorticity parameter W, cannot be deter-
mined independently of the focal mechanism inversion so-
Iution. For the focal mechanisms above 5 km depth, the
inversion solution shows normal faulting, which presumably
reflects the edge effects above the blind strike-slip fault be-
low 5 km depth (Bowman et al., 2003). This solution, how-
ever, reflects only a subordinate part of the dominantly
dextral strike-slip GPS solution. Thus, the two solutions are
not directly comparable.

The strike-slip solution from the inversion of the fault-
slickenline data is most comparable to the dextral strike-slip
solution from the GPS velocity data. Both these data sets, as
well as the paleomagnetic data, characterize the deformation
of the shallow crust. The GPS data define the macrostrain rate
and macrovorticity, and the paleomagnetic data with the age
limits define the microvorticity. Thus, in principle, from
these data we can determine a complete and independent mi-
cropolar solution for the deformation, which we can use to
test the inversion solution from the fault-slickenline data and
the micropolar model of block rotations.

The slickenlines and the paleomagnetic rotations re-
flect a permanent deformation that developed during faulting
over an imperfectly known span of time of between 2 and
3.5 Ma, whereas the GPS data reflect a geologically instan-
taneous deformation that presumably includes both perma-
nent and elastic components. Therefore, in comparing the
fault-slickenline inversion results with the characteristics
of deformation obtained from the GPS studies and the paleo-
magnetic data, we must assume that the deformation rate has
been steady from 2 or 3 Ma through to the present day and
that any elastic component in the GPS deformation will ulti-
mately be converted to a permanent deformation.

Given these caveats, and assuming the 2 Ma onset of
divergent dextral shear in the area (Monastero et al.,
2002), we find that the results for the fault-slickenline inver-
sions and the GPS solutions, respectively, are very similar
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(Table 2, Fig. 7b,c). In particular, the value of the relative
vorticity parameter W determined from inverting the fault-
slickenline data is consistent with the value determined in-
dependently from the GPS and paleomagnetic data, which
would seem to confirm the micropolar theory.

This favorable comparison, however, reflects choices
(including the time span for the accumulation of the paleo-
magnetic rotation and the specific cell for which the GPS
solution was calculated) that, although justifiable, are not
unique. Other assumptions lead to less convincing or even
contradictory results (Lewis et al., 2007, tables 1-4). This
analysis also depends on the assumption that it is appropriate
to compare the fault-slickenline inversion solution for dextral
strike slip with the GPS solution and to combine the rates of
deformation determined from the short-time-span GPS data
with the rotation rates determined from the long-time-span
paleomagnetic data. Given these caveats, the independent
support for the micropolar theory is encouraging but not de-
finitive (see the discussion in Lewis et al., 2007).

Conclusions

I derive an objective asymmetric micropolar moment
tensor from a discrete-block model for a deforming granular
material. This moment tensor is a generalization of the stan-
dard symmetric seismic moment tensor. The definition used
here is for a geometric moment tensor, which does not in-
clude the shear modulus that is usually included in the seis-
mic moment tensor. Thus, the micropolar moment tensor
reflects the deformation in the material rather than the in-
ferred stress.

In a micropolar material, which is composed of rigid
blocks or grains, two independent components of deforma-
tion coexist. The first component is the centroid deforma-
tion, which is defined by the motions of the block centroids.
Taking a moving average of the centroid motions over a
sufficiently large volume defines a continuum field of the
macrodeformation. The second component of the deforma-
tion is the rigid rotation of the blocks about their centroids. A
moving average of these rotations over a sufficiently large
volume defines a continuum field of the microrotation. Both
the centroid deformation and the block rotation contribute to
slip on shear planes, which are the interfaces between adja-
cent blocks.

I derive the separate contributions of the centroid defor-
mation and the block rotation to the local micropolar moment
tensor for individual slip events. Combining these contribu-
tions defines the complete local micropolar moment tensor
for individual slip events. I also define the separate contribu-
tions of the macrodeformation and the microrotation to the
micropolar moment-density tensor for clusters of slip events
in a volume that is large relative to the block size. Then com-
bining these separate averaged deformations defines the
complete micropolar moment-density tensor.

Both the local micropolar moment tensor and the micro-
polar moment-density tensor describe an isochoric (constant-
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volume) deformation, which is defined as the total deforma-
tion minus an anisotropic volumetric deformation. The iso-
choric deformation reduces to the deviatoric deformation if
the volumetric deformation is isotropic.

The symmetric part of the local micropolar moment ten-
sor depends not only on the local centroid deformation but
also on the local block rotation. This demonstrates that an
inversion of a set of seismic focal mechanisms, each of which
reflects a classical symmetric seismic moment tensor, can be
used to infer constraints on the microrotation.

In a granular material, the moment of momentum is not
balanced locally as in classical theory but is balanced on the
scale of the rigid blocks that define the substructure of the
material. Thus, any individual slip event is treated as a single-
couple, not a double-couple, mechanism. The antisymmetric
part of the local micropolar moment tensor arises from the
difference between the rotation of the blocks about their cen-
troids and the independent rotation associated with the shear
that results from the local centroid displacement gradient.
The antisymmetric part of the micropolar moment-density
tensor arises from the difference between the microrotation
and the macrorotation, the latter being a part of the macro-
deformation. The difference between the two rotations is in-
dependent of the rotation of any coordinate system in which
the tensors are described, so the local micropolar moment
tensor and the micropolar moment-density tensors are objec-
tive quantities.

This discrete-block model results in the equations for
seismogenic strain similar to those found by Kostrov (1974).
When the deformation in the descrete-block model, which
occurs on individual slip planes, is averaged over a volume
that is large with respect to the size of the blocks, the result-
ing equations are essentially the same as those developed
from the continuum micropolar theory by Twiss and co-
workers (Twiss et al., 1991, 1993; Twiss and Unruh, 1998).
The analysis here also defines the explicit relationship
between the instantaneous relative rotation parameter W,
which was defined for the contintum micropolar theory,
and the antisymmetric part of the micropolar moment-
density tensor.

I review briefly three investigations of the seismogenic
deformation associated with volumes of distributed seis-
micity in three different areas. The results from these inves-
tigations support the micropolar model for the effects of a
granular substructure on the characteristics of seismic focal
mechanisms. Individually, these results do not provide defin-
itive tests, either because quantitative data are unavailable by
which we could calculate the micropolar parameters inde-
pendently of the inversion of the focal mechanism data, or
because the independent quantitative data are of insufficient
resolution. Collectively, however, the consistency of the re-
sults with the predictions of the theory seems to favor the
micropolar interpretation for the origin of the antisymmetric
component of the micropolar moment tensor.
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Data and Resources

All data used in this article came from published sources
listed in the references. The base map used in Figure 4 was
modified from the U.S. Geological Survey Web site (http://
education.usgs.gov/california/maps/faults_names1.htm, last
accessed February 2009).
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Appendix A
The Kronecker Delta for a Volume Average

We show by induction from a two-dimensional model of
a granular material composed of hexagonal blocks (Figs. 1
and A1), that the Kronecker delta can be defined as an aver-

Figure Al. Geometry of a block in an idealized granular ma-
terial used for defining a volume average over many blocks. (a) The
Bth block in the granular material, which has a volume V), is
shaded gray. The six surfaces with their inward unit normals are
each labeled S¥ and 5®, respectively, for v = 1:6. The volume
associated with each shear surface is similar to the one that is di-
agonally ruled and labeled V(®))_ (b) The inward unit normals 7(*?
and their components in the common coordinate system 77,((&’) for
three of the surfaces (y = 1:3) of the Sth block plotted from a com-
mon origin. The angles show the orientations of these vectors rela-
tive to each other and to the common coordinates.
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age over a volume V that is large compared with the block
size of the granular material by

1 Y C @
b =5 Ve, (AD)
a=1

where n,((”) is the unit normal to the ath surface and V(@ is the
volume associated with the ath surface (Fig. A1). We assume
the sum is over all the surfaces of all the blocks in the aver-
aging volume V.

Figure Al shows the geometry of one of the two-
dimensional hexagonal blocks that make up the model gran-
ular material. The blocks are numbered in some convenient
system 3 = 1:B, and the surfaces on each hexagonal block
are numbered v = 1:6. Thus, the total number of surfaces is
given by

1
=-6B = 3B,

5 (A2)

where the factor of a half is required because, in summing the
number of surfaces over each of the blocks, each surface is
counted twice.

If there are B blocks in the domain over which we are
taking the volume average, then the volume of the Sth block
V(® and the total volume of the domain V are given in terms
of the volume associated with the ~yth surface of the 5th block
V() by, respectively,

18
((6) p— (B7)
%4 _22_ Yy,

B
y=Sy® - V(ﬁ"r)
(A3)

where in the first equation the factor of a half must be intro-
duced, because the volume associated with each surface is
twice that contained in the Sth block (Fig. Al).

For the two-dimensional model in Figure Al, we see
that V(? is the same for all - in the Sth block, so arbitrarily
setting v = 1 in equation (A3) we have

Vo = %(6V(m)) = 3y, (Ad)

From Figure Al we also see that the inward-pointing unit
normals to the surfaces of the block have the components

7],((1) = [—sin 6, cos d],

7 = [sin(60 — 6), cos(60 — 6)],

‘3) = [sin(60 + 6), — cos(60 + )], A5)
77k = [sin @, — cos 0],

(5) = [—sin(60 — ), — cos(60 — )],

@ = [~ sin(60 + 6), cos(60 + 0)].
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We define Ay, to be the right-hand side of equation (A1),
and we show that it is equal to the Kronecker delta:

[6; 3
Ay = Z n(a (a>V(a) _ VZ Z 77( ), (87) VB

p=1 =1

(A6)

We divide the second summation into two summations over
the first three and second three surfaces of the block:

L3 69 6o o\ 6.5
Au=50" [Z VD £y g ven |,
/ = =4

B=1Lk~=1

(A7)

The symmetry of the model (Fig. A1) allows us to con-
sider just the summation over v = 1:3 on the right-hand side
of equation (A7) because the summation over v = 4:6 will
give the same result.

Introducing the components of the unit normal vectors
given by equation (A5) into equation (A7), we can calculate
the values of the six components to prove that Ay is the
Kronecker delta. For the first component with (k/) = (11),
we have

All -

< |

B
Z[Z N Z e (ﬁv)v(lﬁ):|

y=1 y=4

(A8)

1< ,
Ay = z:{[sin2 6 + sin?(60 — 6) + sin*(60 + 6)]VD
I&

<

(A9)

6
§ : (Bv), (5 (
+ | "7)77(1 ) V@'y}.

=4

Introducing the standard trigonometric relations for the sine
of the sum and difference of two angles and then doing some
algebra, we find the dependence on # drops out, leaving

A _li §V(
Tve2

6
A1) + Z ngxiv)n(lﬂ’v) V(dq)i| ) (A10)
y=4

By the symmetry of the geometry in Figure Al, we can
substitute for the summation in equation (A10)

1 &3
A== yBh V(‘“) 3vPD . (A1l
! V;[z +3von] = z (A1)
Using equation (A4) and then equation (A3), we find



1130

For the off-diagonal component with (ki) = (12),
we have

1 G 60 59 i S\ B0 BV
Ay = 92[2 AP EIVED 3 0 ano}

p=1bty=1 =4

(A13)

B
A, = :}Z{{[— sin 6 cos 6] + [sin(60 — €) cos(60 — 0)]
A=

- tsin(60 + 0) cos(60 + )} VD

6
3 e
Y v }

=4

(A14)

Again after substituting the trigonometric relations for the
sine and cosine of the sum and difference of two angles
(and doing some algebra), we find the dependence on 6 drops
out, leaving

o= 3o

3:

Z CONE />V(a~,>]

=4

Applying the symmetry in the geometry of the block and
then the symmetry of A;;, we get

1
A12 =]—/{O—I—O}, A12 :A21 :O (A15)

Finally, we evaluate the term for which (kl) = (22):

1 B 3 5 6 ‘
s = 3 VO + v

a=1Ly=1 y=4
B

—_

Ay = {[cos2 0 + cos2(60 — 6) + cos2(60 + §)]VBD

V.

_|_

=
Mo i
[

Ié3 By 1% B
775 V)ng ? (3’})}'
=4

Using the same procedures as before, we find

& (B7) (3) -y
Azz_VZ{[ }v<ﬂ>+zn o vw} (A16)

Again using the symmetry of the model geometry with equa-
tion (A5), we see that the summation over v = 4:6 is iden-
tical to that for v = 1:3. Then, using equation (A4) we get

R. J. Twiss

Azz——Z[ yon 43 V(Jl)} 23"“”

6=1

Z v,

/3 1

(A17)

Thus, from equations (Al12), (AlS5), and (A18) we
see that equation (6) becomes

6
Akl — Z 77(0) () V(a) _ Z Z T](SW) (87) V(ﬂy)

=1 v=1
1 0
o 1|

(A19)

Ay = oy (A20)
Q.E.D.

Thus, we have proven equation (A1) for the particular
geometry of Figure Al. This result also applies in the special
case for which there is only one hexagonal block (B = 1),
and the summation over v = 1:L is over all six surfaces that
bound that block. By induction, we infer that this is a general
result for a block of any geometry if the summation occurs
over all surfaces that define a closed surface for the block.
Thus, we conclude

1 L
Z ,,7(5”/) (B7) V(/i”/)

=y (A21)
=

In general, we expect that for any given record of a series
of earthquakes, the N surfaces on which slip events have oc-
curred will not include all the surfaces of any single block,
nor will they include all the surfaces of all the blocks in the
domain. We assume, however, that if NV is sufficiently large,
these surfaces will have a distribution of orientations that on
the average will be similar to that for the surfaces bounding
any given block. Thus, for sufficiently large N, equation (A1)
would still hold. Given sufficient time, ultimately slip must
occur on all surfaces of each block in order to accommodate
the rotation of the block.

Appendix B

Antisymmetry of the Averaged Microrotation Tensor

We want to show that when the local slip vectors due to
block rotations are averaged over all the surfaces of a block,
the result is an antisymmetric averaged rotation tensor. We
illustrate this result in two dimensions using one of the hex-
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agonal blocks (see Fig. A1), which rotates about the axis nor-
mal to the plane of the two-dimensional block.

We modify the notation by which we identify an indi-
vidual surface («) by specifying the number /3 of a specific
block in the granular material and the number ~ of the sur-
face of that block, so a specific surface becomes designated
by its block number and surface number (7). Thus, from
equation (68) the microrotation is the average of the block
rotations defined for each surface:

1 o) () («
Ry = VZR( ey
a=1

DR

B=1~y=1

B, (B) (ﬁ”) Vv

Rip i (BI)

Because we assume each block to be rigid, the rotation for all
surfaces of a given block must be the same. Thus,

Rgm = Rgf) for all ~, (B2)
whereby equation (B1) becomes
6 /3 /3
U = Z R(d) [Z ngv) nﬁldv) V(ﬁv)]. (B3)
=1

For the summation on all surfaces of the (th block,
which is the term within the brackets in equation (B3),
we use equation (A21) to find

18 . 1S
Ry =30 R V00,3 =53 RV, (B4)

p=1 B=1

However, from equation (60) we see that the microrotation
tensor is antisymmetric for any given surface, and it is the
same for the rigid block of which that surface is a part. Equa-
tions (B4) and (60), therefore, imply

Z R(J) v = Z R(J) Vo = (B3)
ﬂ 1
Thus, the instantaneous microrotation tensor is
antisymmetric.
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