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Short Note

Waves in Linear Elastic Media with Microrotations, Part 2:
Isotropic Reduced Cosserat Model

by E. F. Grekova,” M. A. Kulesh, and G. C. Herman"

Abstract We consider wave propagation in soils and rocks modeled as an isotropic
linear elastic reduced Cosserat continuum to take into account the proper rotational
dynamics of heterogeneities contained in media. In such a medium, translations and
rotations are kinematically independent, the stress tensor is nonsymmetric, and the
couple stresses are zero. We consider plane wave propagation, construct the Green’s
function for the harmonic point source in the 3D unbounded medium, and study the
Rayleigh-type wave. The compression wave for the isotropic case is the same as in the
classical medium. The shear wave is coupled with rotation and differs both from
the classical case and from the case of the full Cosserat continuum. There are forbid-
den bands of frequencies where some waves do not propagate, localization phenom-
ena are possible, and strongly dispersive behavior is observed near these bands. For
the Rayleigh wave, there is also a cutoff wavenumber for one of the dispersion

branches.

Introduction

Rocks are continua of complex structure that are
modeled in various ways in the literature. Apart from mod-
els taking into account the details of the microstructure, there
are models based on effective media (Hudson and Knop-
off, 1989). These anisotropic models replace the actual het-
erogeneous medium via some averaging procedure by an
anisotropic, but homogeneous, medium. In this way, com-
plexity and spatial heterogeneity are replaced by anisotropy
(of a homogeneous effective medium). By the very nature
of the averaging process, these methods do not account for
frequency-dependent effects.

One of the possible ways to take into account micro-
structural degrees of freedom is to consider the rotational dy-
namics of heterogeneities that are contained in rocks and
soils; for the importance of rotational dynamics in seismol-
ogy see references in Kulesh (2009). Many researchers use
the full Cosserat continuum model to model soils and gran-
ular materials, for example, Vardoulakis (1989) and Suiker
et al. (2001). The first time, the 3D medium consisting of
point-bodies possessing rotational degrees of freedom was
suggested by Cosserat and Cosserat (1909). The complete
constitutive theory of the Cosserat continuum was suggested
by Kafadar and Eringen (1971). Basic equations and wave
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problems for the Cosserat elasticity also can be found in
Nowacki (1986) or in Eringen (1998).

This may be done in the frame of the model of an ef-
fective homogeneous elastic reduced Cosserat continuum.
Schwartz et al. (1984) suggested this theory for the first
time for the description of granular materials in its isotro-
pic variant.

In this model, point bodies of the continuum can rotate
and move, and their rotations and translations are kinemati-
cally independent. The medium reacts to the rotation of a
point body relative to the background continuum, but there
is no rotational spring trying to reduce the relative turn of
point bodies. This means that the stress tensor is asymmetric,
but the couple stress tensor is zero (contrary to the complete
Cosserat continuum).

The reduced Cosserat continuum will be more appropri-
ate for the description of those media where there is no elastic
reaction counteractive to the relative rotation of neighboring
heterogeneities. The full Cosserat medium, discussed in Ku-
lesh (2009), will better describe those media where such a
reaction is present. Probably, only an experiment can answer
the question, Which model is more suitable for a concrete
medium? We present the results on wave propagation in both
media, which can be used as a theoretical base to suggest an
appropriate experiment.

In this paper, we shall consider wave propagation in the
isotropic reduced Cosserat continuum: plane waves, waves
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caused by dynamical point sources for the unbounded 3D
medium, and the Rayleigh-type wave. The Green’s function
for a classical elastic half-space was first published in Okada
(1985). The Green’s functions are necessary both for the
analysis of the displacements produced by earthquakes as
well as for the deformations arising from fluid-driven crack
sources. The Green’s functions presented in this article are
obtained for an unbounded 3D reduced Cosserat continuum;
therefore, they may be used for the calculation of the same
fields but far enough from the surface or before the wave is
reflected from it. We cannot obtain these solutions as a par-
ticular case of the corresponding solutions for the full Cos-
serat continuum because the order of the partial differential
equations is different; therefore, we investigate the case of
the reduced Cosserat continuum separately.

Basic Equations

Let ¢ be the unit tensor, ¢ be the stress tensor, U be the
elastic energy, u be the vector of an infinitesimal displace-
ment, 0 be the vector of an infinitesimal rotation of the point
body, and p be the density of the medium. For simplicity, we
consider the inertia tensor to be spherical and equal to je,
where j is the mass density of the inertia moment. Let us
denote by X and Y the external volume force and torque,
respectively.

The elastic energy in the complete linear elastic Cosserat
continuum depends on the following deformation tensors
(Eringen, 1998): (gradu)®, (gradu + 0 x ¢)4, and grad 0. In
the reduced Cosserat continuum, according to our assump-
tion, there is no dependence on grad®, that is, the elastic
constants 3, v, and € used in Kulesh (2009) are zero. There-
fore, U has to be a quadratic form of gradu + 0 x e. For
the isotropic case, we have only three elastic constants: Lamé
coefficients A\, u, and one (new) rotational constant v, an
elastic constant characterizing the resistance of the medium
to the rotation of a particle. The equations of motion are the
particular case (3 = v = € = 0) of those in Kulesh (2009):

& =2y +205W + A (Y)e,
v = gradu+0 x e,
(A + 2p) graddivu — (¢ + «) rotrotu + 2o rot 0 + X
= pu, (1)
2arotu — 400 +Y = 10

However, the solutions cannot be obtained directly from
those for the full Cosserat continuum setting § =y =¢ =
0 because the order of the partial differential equations is
changed.

The equations of classical elasticity for u follow from
equation (1) in two limiting cases: (1) @ = 0 (the medium
does not resist at all to the rotation of particles, the equation
for @ is separated, and rotation waves do not propagate) and
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(2) @ — oo (Cosserat pseudocontinuum, the particles are
rigidly embedded into the medium, 6 = 1/2 rotu).

In the static case (0 = 0) and in absence of external
torque loads (Y = 0) we have again the latter case. How-
ever, the wave behavior of the medium is more complex
than in the classical case. Equation (1) gives us a relation
between the rotational and translational displacements: 6 =
1/2 rotu + (Y — jO)/(4c), which differs from the analo-
gous relation for the Cosserat pseudocontinuum by the
last term.

Dispersion Curves for the 3D Case

Let us introduce the following magnitudes: C7 =
A+2w)/p. Ci=p/p. Cl=pu+a)/p wf=4da/j,
and W} = W3/(1 + a/p).

Using Sandru representation via potentials ®; and ®,
(Eringen, 1998), we separate equations (1) into the form:

DI(D2D3 + 40[2A)@1 = —pX,

D3(D2D3 + 4&2A)q)2 = —pY, (2)

where O = (A4 2p)(A—C;207), O =(u+a)x
(A — C3207), and O3 = —4a(1 + wy20?).

The translational and angular displacements can be
found via these potentials in the following way:

u=,0;®, — [(\+ p— a)d; — 40?] grad div ®,
— 2a0; rot ®,, (3)
0 = [0,[1;®, + 4a? grad div®, — 2al]; rot ®,.

In this section, we consider zero external loads X and
Y and look for the plane-wave solution of (1): ®; =
B g)e’®T) and B, = Py e’®T), where k is the wave
vector, k = K|, w is the angular frequency, @, and ®,(,
are the amplitudes of the potentials ®;, ®,, and r is the
radius vector.

Substituting this representation in (2) with X, Y both
zero, we obtain the dispersion relations. The compression
wave does not change its character in comparison to the
classical continuum with Lamé constants A and p, and its
velocity equals C;. The shear wave, on the contrary, changes
essentially in that range of frequencies where the rotation
of particles with respect to the bulk is important. The shear
wave is coupled with rotations, and as a consequence, the
shear dispersion curve doubles. The shear dispersion rela-
tion is
W -y w

2
ZCT? m_afz(w)' “4)

kS

These dispersion curves are shown in Figure 1. At low

and high frequencies, the medium behaves as a classical elas-
tic continuum with compression-wave velocity C; and shear-
wave velocities C; and C,,,, respectively. There may appear
one important difference: for v > A\ + p the shear wave,
though almost not dispersive at high frequencies, is faster
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Figure 1. 3D dispersion curves. The P wave is not affected; the
S wave is strongly frequency dependent and has a forbidden zone
for w; < w < wy, where the wave decays exponentially with depth.

than the compression wave (e.g., a classical medium with
such [positive] elastic constants does not exist). At frequen-
cies close to critical frequencies, wy and wy, there is a strong
dispersion and localization phenomenon. In the forbidden
zone (w; < w < wy) the shear plane waves do not propagate.
The horizontal line w = w on the figure corresponds to the
free nonpropagating rotational oscillations of point bodies.
The calculation of the eigenvectors for the plane-wave prob-
lem shows that the shear-rotation wave changes its character:
it is not purely transversal, and the phase also changes. The
expressions for displacements are

u = e ®TIN 4 20) (1 = P /ug) (k] — w?/Chay
—[A+ p—a)(1 —u?/u) + alkK, - a
+ 2a(1 — w? /wd)k, X ay}
+ e ®IT=D4of—[(A + p— a) (1 — w?/w)
+ alkk; - A}, 5)

0 = e m020[2(u + a)(1 — P /) (K — 2/ Cl)ay
- 2aksks cay + (/\ + Z/J)U(% - w2/C[2)ks X al]
+ e grad div A, (r), (6)

uJf W)
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et Xoe! w2
A p(N 4 2p)
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where a;, a,, and A, are arbitrary constant vectors and A, is
an arbitrary vectorial function of r.

Green’s Functions

Now consider the reaction of the system to the dynamic
point source. This could be useful, for instance, to under-
stand the character of waves, caused by the earthquake, be-
fore reflection from the surface. This is also a necessary step
to obtain the solution for any type of sources distributed
in space and time. Consider pX = X,6(r)e™’ and pY =
Y,6(r)e". Using the inverse Fourier transform, and using
the fact

—+00 . .
/ (k* — k)~ te~*r dk, dk, dk, = 2m*e™ 7 /r, ()
-0

we obtain the solution for the potentials:

B, = xpe (e W /Ct — =i WIr/Coy

8
q) _ yoelwre—lwf(w)r/cl/r’ ( )
where
@) = —iJ(1 = 2B /|1 — 2/
if w <w < wp;
F@) = (=) /(1 — w2/,
ifw>w, or w<uw; )
Xo = —Xo/{16map(\ + 2)(1 — w2 [ )[R/ C?
W f2(W)/C31L

¥o = Yo/[64mau(1 — w2/ (1 — w2/

The expressions for u and 0 can be obtained from ®,
and ®, using (3):
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where T = r/|r].

The solution for u at w < w; and Y, = 0 gives the
Green’s function of classical elasticity (Miklowitz, 1978)
for a medium with phase velocities C; (compression wave)
and C; (shear wave) and at w > w; and Y, = 0 with phase
velocities C; and C,,. This is a reasonable result: from the
dispersion curves and the equation of motion we see that in
these limits the medium behaves as a classical elastic me-
dium with corresponding constants. One of the main dif-
ferences with the classical elasticity is the strong frequency
dependence in amplitude and wavenumber. Another one is
the localization for a certain domain of frequencies: in the
forbidden zone (w; < w < wy) part of the source energy is
stored near the source; we see that only the part associated
with the P-wave propagates and the one associated with the
shear waves exponentially decays.

These expressions are valid for w # wy and w # w;. At
w = wy, if Yy # 0, we have a resonance solution for 0. For u
we have
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We observe localization (localized wave, decaying as 1/r%)
even for Yy = 0. In the latter case at w = w, we have
0 = e™'X, x r/(8Tar?).

The case of w = w; has to be considered separately.
Starting from (2), we obtain

2 2
XG5 ey L
4 pw? rC?

Wi e — 3f'f' C%a iw
+ (1 + la) Ti| — 204(,0% rotYO(S(r)e 1[,
4 2 (12)
0= e“‘“’% [Yoé(r) + w—s%“YoAé(r)

@
c .

— w—zo‘ grad div Yoé(r)].
1

We see that a strong localization takes place at w = w; if the
external torque Y # 0.

Solution for the Surface Rayleigh Wave

Consider the wave propagation along the surface of the
free elastic half-space. Let z be the vertical coordinate with
the corresponding unit vector i3, and x and y—coordinates in
the plane (axes i; and i,). We look for the solution of (1) in
the form of
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uj(x,z,t, k) = /oo Uj(2)e' &N 5, (w) dw,

(oo A (13)
Hj(x, z,t, k) = / Wj(Z)el(kx+wt)§0(w) dw,
—00

where i is the imaginary unit, & is the wavenumber, w is the
circular frequency, ¢ is the time, U;(z) and W (z) are ampli-
tude functions depending on depth, and §(w) is the complex
spectral function corresponding to the Fourier spectrum of a
source signal and determines the wavepacket form. The sub-
script j takes values x, y, and z.

The equation of motion (1) then separates in two inde-
pendent systems of equations: one for U,(z), U.(z), and
0, (z) and the other for U(z), 0,(z), and 6,(z). To investigate
the Rayleigh-type wave in the medium, we look for the solu-
tions of the first system decreasing with depth z. We have

th(x, <, t)
0 20,1, C? ) .

:/oo k(eulz _ 2k2C1'22_ ;2 eyzz)ez(kx+wt7r/2)so(w) dw,
- 5

u,(x,z,1)

o0
= 12 e V1T —
—00

Hy(x, z,1)

2](26? —v i(kx+wt) g

—UV] sz

~ [ A
:/ R A - T e
- N

(14)

Applying the boundary condition i3 - ¢ = 0, we obtain the
dispersion relation for the Rayleigh wave:

w\?2 w?
—41/11/2k2+(2k2 - —) =0, where v, = [k ——=,
c c?

W (1—u?/u}

The denominator of v, equals zero at the critical fre-
quency w = w;. The surface wave will exist only provided
that v,,€R, v,, > 0, and m = 1, 2.

Curves v; = 0 and v, = 0, bounding the allowed zone
for the Rayleigh wave, are the dispersion relations for the
compression and shear-rotation plane waves in 3D, respec-
tively. The allowed zone is shown in Figure 2. We have
proved the following features of equation (15):

1. The Rayleigh wave at high frequencies is slower than
both the shear-rotation wave at high frequencies and the
compression wave in the 3D unbounded medium: C, <
C,, and C,, < C;. At these high frequencies, the rota-
tional degrees of freedom are almost embedded into the
background continuum, and the medium behaves as the
classical medium with 3D phase velocities C; and Cy,.
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Figure 2.

2. At the same time, the Rayleigh wave at high frequencies
can be faster than the shear wave in the unbounded 3D
medium at small frequencies: C, > C;,.

3. At w — 0 the velocity of the Rayleigh wave tends to the
velocity of the Rayleigh wave in the classical medium
with Lamé constants A and p and, consequently, is less
than the plane shear-wave velocity in this medium.

4. At w — w; — 0 the dispersion equation (15) has no solu-
tion. Thus there is a forbidden band of frequencies lying
below w;, where the Rayleigh-type wave does not exist.
Apparently, in this band of frequencies the perturbations
stay localized near the source, and the rotational degrees
of freedom trap the wave energy.

5. There is a solution: k — oo, w = O(1), corresponding
to the case of an infinitely large wavenumber for a cer-
tain critical frequency w, = w;/A/(1 + A) < w;, where
A=+ p/a)[l —p/(A+2p)]. One of dispersion
curves has an asymptote w = w,. At w = w, and at w —
wy + 0 the Rayleigh wave does not exist, for example,
there is a forbidden band of frequencies above wj.

In all numerical examples we have seen that the whole
band of frequencies (w,;w;) is forbidden, but we have not
proved theoretically that this is always so. The numerical
analysis of the dispersion relation (15) for the constants
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Allowed zones for Rayleigh waves.

A=28x10°, p=4x10° a=2x10° and I = 10? (in
the International System of Units) is represented in Figure 3.
The solid line corresponds to the reduced Cosserat con-
tinuum, and the dashed horizontal line corresponds to the
Rayleigh-wave velocity in a classical medium. The vertical
lines bound the frequency interval (w,;wy). In this frequency
range the Rayleigh wave cannot propagate; it may mean that
localization phenomena are possible for these frequencies.
Apart from that, near this domain we observe dispersive be-
havior. At very low and very high frequencies, at least for the
given parameters, the behavior is close to the classical one
(but with different elastic constants).

Conclusions

The rotational dynamics of heterogeneities in rocks and
soils, taken into account by means of the reduced Cosserat
continuum model, gives a strong frequency dependence both
for the plane shear-rotation waves and the waves induced by
a harmonic point source in 3D unbounded medium, as well
as for the Rayleigh-type wave. We have more dispersion
branches than in the classical case and a different type of po-
larization. There are forbidden bands of frequencies, where
the energy of the wave is trapped by the rotational dynamics
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Figure 3.

reduced Cosserat continuum.
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Numerical example illustrating the behavior of (a) wavenumber, (b) phase, and (c) group velocities for a Rayleigh wave in the
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of the microstructure, that is, the corresponding waves (or a
part of the wave in the case of dynamic point sources) do not
propagate, and localization near the source is possible.

The forbidden band for the Rayleigh wave lies precisely
below the forbidden band for the 3D case. Near these forbid-
den bands we observe strong dispersion. There is a frequency
where we observe resonantlike behavior for the rotational
displacement in the presence of external torque load. This
can be seen in the expression for the Green’s functions.
For the Rayleigh wave we have, apart from the boundary
and cutoff frequencies, also a cutoff wavenumber, where
one of the dispersion branches starts. The wave behavior dif-
fers from the classical case as well as from the full Cosserat
continuum with nonzero couple stresses, where we have no
forbidden frequency bands and polarization is different.

The predicted effects are comparable to the ones ob-
served in scattering by wavelength-sized objects in an elastic
medium. This indicates that our model could eventually rep-
resent an effective medium that accounts for the frequency-
dependent transmission of shear waves.

In both—reduced and full—Cosserat models, in contrast
to the classical elasticity, the dispersion of the Rayleigh wave
and of bulk plane shear-rotation waves is present. The main
difference between the full and reduced Cosserat models is
the presence of a forbidden zone of frequencies in the re-
duced model, where the Rayleigh and shear-rotation waves
do not propagate, and the absence of such a zone in the full
Cosserat model.

The results obtained in this article can be used for the
preparation and interpretation of seismic experiments, which
could validate the importance of asymmetric theories of elas-
ticity in earthquake and exploration seismology, and for ex-
perimental determination of the material constants of the
Cosserat media.

Data and Resources

No data were used in this article. Some plots were made
using the Matlab (http://www.mathworks.com/products/
matlab/, last accessed June 2008).
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