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Spinors and Twistors in the Description of Rotational Seismic Waves

and Spin and Twist Solitons

by Eugeniusz Majewski

Abstract A noncommutative (anti-) self-dual Yang—Mills theory as a source of
multisoliton solutions of nonlinear wave equations was applied to the description
of rotational seismic waves that are excited in the earthquake source. Spinors and
twistors are used to describe spin and twist solitons branching off dispersion curves
for rotational seismic waves. Complex physical structures are adopted to describe spin
and twist effects resulting from the presence of translational and rotational defects in
elastic rocks. A seismic space is also assumed to have a complex structure. An earth-
quake source zone is modeled by a set of equations for interacting fields that is mathe-
matically similar to the noncommutative (anti-) self-dual Yang—Mills equations. Some
similarities between dislocations and strings are emphasized, for example, those that
exist between surface defects and D-branes in string theories. Dislocations and dis-
clinations are treated as sources for seismic spin and twist fields. By symmetry reduc-
tion various soliton equations for seismic spin and twist solitons can be obtained from
the set of earthquake source zone equations, which is similar to the noncommutative

(anti-) self-dual Yang—Mills equations by symmetry reduction.

Introduction

There is a lot of observational evidence concerning rota-
tional motions on the Earth’s surface excited by earthquakes.
From observations of rotations of tombstones, chimneys,
small pyramids of wooden blocks, St. Bruno obelisks, stone
lanterns, vases, and many other objects on the Earth’s sur-
face, we can infer the existence of rotational motions in
earthquake focal zones. Rotational motions are present in
many other natural phenomena and processes. Beyond earth-
quakes (see Majewski, 2006a), some other tectonic, volca-
nic, mining, and land sliding events can be sources of
rotational motions as well. It is observed that rotational mo-
tions (spin and twist) in earthquake sources naturally excite
rotational seismic waves and solitons (Majewski, 2008a).
The key idea of this article consists in extending the descrip-
tion of rotational seismic waves into a nonlinear regime and
employing results known from Yang-Mills theory and its
relation to soliton theory. The goal of this article is to de-
scribe rotational seismic waves and spin and twist soli-
tons excited in earthquake sources. To model an earthquake
source zone, we apply a set of equations that is mathemati-
cally similar to the noncommutative (anti-) self-dual Yang—
Mills (NC ASDYM) equations (Majewski, 2008b). The NC
version of ASDYM theory was adopted here in order to avoid
some singularities. It is also connected with complexification
of the space-time. We need such a complex space-time to
describe rotational seismic fields that are modeled here as
complex fields. It results from an analogy between complex

electromagnetic fields and complex rotational fields. The NC
ASDYM equations are interesting for a number of reasons,
and we will discuss the NC ASDYM theory in some detail.
We consider a nonlinear elastic medium with translational
and rotational defects in the form of dislocations and dis-
clinations and surface defects. Such a medium allows the ex-
citation and propagation of nonlinear rotational seismic
waves and solitons. The NC version of the ASDYM-like equa-
tion has an extremely rich structure and can describe various
physical fields as, for example, seismic spin and twist fields.
These equations can also describe interactions between the
fields. We concentrate mostly on describing the seismic spin
and twist waves and solitons. The considered version of the
NC ASDYM-like equation is treated here as a master equa-
tion that can be reduced to some soliton equations for spin
and twist solitons. It is well known in the literature that
the Bécklund transformations and solution generating tech-
niques in the form of Atiyah—Ward ansatz solutions in terms
of quasi determinants based on a symmetry reduction of the
NC ASDYM equation in supergravity allows one to derive a
plethora of NC soliton equations. We adopt this technique to
formulate differential equations for rotational seismic waves
and solitons. As a result, we obtain nonlinear equations de-
scribing rotational seismic waves propagating in the elastic
Earth modeled as a nonlinear elastic medium with transla-
tional and rotational defects. We can see that the influence
of hidden symmetries in the NC ASDYM equations is visible
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in affecting the form of NC solitons. The NC ASDYM theory
provides us with the formalism that is essential in the de-
scription of families of soliton equations. The derived non-
linear equations reveal the interplay between the nonlinearity
and dispersion. In the formulation of the NC ASDYM theory,
we use spinors and twistors. We should emphasize that, in
spite of the semantic association, there is no direct associa-
tion of spin and twist waves with spinors and twistors; thus,
there is no association: spin wave—spinors, twist wave—
twistors. However, it is noteworthy that the NC ASDYM
theory is part of a twistor string theory. We point out some
similarities between dislocations and strings and between
D-branes from string theories and surface defects. For some
wavelength to grain size ratios, the seismic waves propagate
as seismic solitary waves or seismic solitons. We distinguish
two kinds of rotational seismic waves: (1) rotational longi-
tudinal waves, that is, PR waves; and (2) rotational shear
waves, that is, SR waves. Rotational seismic waves propagate
faster in solid rocks and much slower in fractured media
along tectonic faults. The slow rotational tectonic waves
propagate along the fractured tectonic fault with a speed of
about 1 km/day. It has been observed that these waves may
have a form of rotational seismic solitons and that they can
trigger earthquakes (Majewski, 2008a). Because of the fact
that solitons can propagate without any loss of energy, these
waves are extremely important carriers of seismic energy.

Newman and Penrose (1962), Penrose (1968, 1983),
and Penrose and Rindler (1986) applied twistors to describe
massless spinning particles and light rays. They pointed out
that twistors can describe twisted photons, nonlinear struc-
ture of graviton, or charges for massless spin-3/2 fields
(gravitino). Because of the well-known particle-soliton dual-
ity, it seems reasonable to relate twistors with spin and twist
solitons. We adopt the twistor quantization theory developed
by Penrose and Rindler (1986) and employ twistors to de-
scribe spin and twist solitons, that is, quanta of spin and twist
energy (see Majewski, 2006a,b,c,d,e). Twistors can also de-
scribe seismic rays.
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Figure 1.

earthquake, and (c) two force couples generating spin motions.
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Spin and Twist Motions and Waves Excited
in Earthquake Sources

The existence of rotational motions excited by earth-
quakes was proposed by Teisseyre (1973, 1974). He con-
structed the first rotational seismogram (Teisseyre, 1974)
in an indirect way by using an azimuthal array of horizontal
seismographs. Droste and Teisseyre (1976) derived rota-
tional seismograms of rock bursts from a nearby coal mine
in Upper Silesia in Poland. Later on, Teisseyre et al. (2003)
were recording rotational seismic waves of different events in
the very near field. For the first time the rotational seismic
motions were directly recorded (Stedman et al., 1995; Sted-
man, 1997) using a ring laser in Christchurch, New Zealand,
and in Wetzell, Germany (Igel et al., 2005; Cochard et al.,
2006; Schreiber et al., 2006). Moreover, Takeo (2006) was
measuring rotational motions in a near field. Measurements
of seismic spin and twist waves were conducted by Teisseyre
and Suchcicki (2006) and Teisseyre (2007).

Most earthquakes occur under a certain high level of
confined pressure. The constitutive law during an earthquake
is controlled by a macroscopic property of the fault such as
macroscopic roughness of the fault, thickness of the fault
gouge layer, geometry of the fault, the macroscopic change
of the fault strength, and so on.

Torques generated by force couples that yield spin mo-
tions in an earthquake source are illustrated in Figure 1. An
earthquake fault surface is formed as a shear surface during
an earthquake. As the result of a motion of tectonic plates
along the fault surface in opposite directions, two force
couples generate spin motions. The force couple S; is per-
pendicular to the force couple S,. Because of the confine
pressure acting in the direction of the compression forces,
the action of the force couple S; is enforced. Eventually,
the spins S| and S, become sources of seismic spin waves
and spin solitons (see Majewski, 2006b).

Because of strong inhomogeneities of rocks in the fault
zone, the shear direction and with it the directions of the prin-

Torques generated by force couples that yield spin motions in the earthquake source. (a) Before an earthquake, (b) during an
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cipal shear stress axes are changing around the prevailing
shear stress directions (see Teisseyre, 2009; Teisseyre and
Goérski, 2009). These changes have a twist nature (see Fig. 2),
and they are sources of seismic twist waves and twist
solitons.

The Nonlinear Rotational Seismic-Wave Theory:
Application of the (Anti-) Self-Dual
Yang—Mills Fields

We propose a nonlinear rotational seismic-wave theory
to describe processes in the earthquake source zone. A math-
ematical formalism of the ASDYM is adopted here. Rota-
tional seismic fields (spin and twist) are described in the
language of the Yang—Mills theory. The mathematical formu-
lation of the ASDYM theory is ideal for our purposes because
it can describe integrable systems; thus, this is exactly what
we need in seismology. This formalism is well suited for
nonlinear seismic waves and describes a systematic approach
to deriving soliton equations. In particular, the ASDYM the-
ory was frequently applied to describe chiral fields, that is,
rotational fields. In addition, spin coefficients play an impor-
tant part in gravitational radiation (Newman and Penrose,
1962). In particular, spinors and twistors are very convenient
tools in our analysis of spin and twist motions in rotational
seismology.

We assume that the seismic space is the four-
dimensional space R* characterized by the metric (see
Lechtenfeld and Popov, 2007)

s =g, dxt'dx" = det = dx"dx*? — dx*"dx'?,
ds? ld/du d(dxAA’) dx'V dx2? dx2V dx1?
(M

(@)
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where g is the metric tensor and p, v =0, 1, 2, and 3
are space-time indices and A =1, 2 and A" = 1", 2" are
spinor indices.

We have a Yang—Mills field defined by

m,uz/ = [v,us vy] = VI/.,U. - V,u,l/ + [V VV]’ (2)

w

where R, is the rotational field strength tensor and VL rep-
resents a gauge field (Mason et al., 1995).
We postulate the field to be self-dual

1

J— R,
w = Eeuww% p or

R R = =N, 3)

where €,,,., is a completely antisymmetric tensor.

Here, the gauge field V), is a rotational field. Its upper
index is related to its Lie algebraic nature, while its lower
index is a space-time one. This field is real in the special
unitary group SU(2) Lie algebra, because a proper choice
of a basis in this algebra allows us to make these coefficients
real. We should emphasize that we try to use different for-
malisms connected with complexification of the space-time.
We need a complex space-time in order to describe a com-
plex rotational seismic field w,,,. We should add that we want
the Yang—Mills field to be defined in a NC space-time in or-
der to avoid some singularities (Hamanaka, 2006). In a gauge
theory the potentials Vj,, can be extended into a complex
space with the complex coordinates y, y, z, and Z. Now, the
self-duality equations (3) and (4) can be expressed as

R

— fﬁzz - O, SR_VZ - 9%;5 - O (4)

vy

Equation (4) in spinorial notation reads as

(b)

Figure 2. A simple model of twist motions of the principal shear stress axes in the earthquake source.
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[Vaa. Vgl = Ranpp = €xpRup + €4pRap, 5)

where it 45 and R, 5 denote a self-dual and an anti-self-dual
part of the rotational gauge field strength, respectively.

From the second equation in (4) it follows that the rota-
tional gauge potentials V,,V_(V;, V;) can be treated as a
pure gauges for fixed y,Z(y,z). Now, one is in a position
to conclude that two complex matrices C and C exist that sat-
isfy the following conditions:

R

(@l

v, =c"'c,,
v.=cc.,

V& = 671

V.=C" ©

(@l

If we denote J = Cé_l, then the last from the previous re-
lationships can express self-dual Yang—Mills fields and takes
the form

J'I); =@ =0. (N
Let us introduce the following spinors:

1

1
_ A'B _ AB
Rap=— 56 *%AA’,BB’ Rap =— B € ERAA’,BB'-

®)

Now, we use a rotational gauge potential V4, and the spi-
norial coordinate system to obtain the following expression:

SRAA’,BB’ = VBB’,AA’ - VAA’,BB' + [VAA” VBB’]

= expRup + €apNyp. )

Because we consider a seismic-wave excitation in rock
materials with defects, it would be useful to comment about
some similarities between defect theory and string theory.
Let us look at a structure of linear and surface defects.
We can observe that a forest of dislocations is similar to
strings. The dislocations are anchored in surface defects that
are similar to D-branes in a string theory (see Fig. 3).

Starting from an analogy to a complex electromag-
netic field

C=B+iE, (10)

where B and E are the magnetic and electric fields, respec-
tively, Teisseyre et al. (2006a) (see also Boratynski and Teis-
seyre, 2006) considered a complex rotational field that can be
expressed as

Wy = Wi + W), (11)

where wy,,; and w,,,, are the spin and twist components, re-
spectively. So, the spin and twist components are treated as
the antisymmetric and symmetric tensor components, respec-
tively. In order to express the rotational fields as complex
fields, we will use the Moyal star product.
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Figure 3. Structure of linear and surface defects. A forest of

dislocations is similar to strings. The dislocations are anchored
in surface defects that are similar to D-branes in string theory.

Deformation of Fields by the Moyal (Star) Product
The Moyal star product is defined by

F@) * g(x) = YT (x 4+ Ogx + Mlemyo. (12)

In virtue of this definition, the rotational gauge fields have to
be complex. The NC Yang—Mills action is invariant under the
gauge transformations as

Vlgl =8 *Vu *g;l _g,u *g;]7 (13)

where g;! is the inverse of g with respect to the star product

gxg =g xg=1 (14)

The contributions of the terms i®"? in the star product trans-
form the rotational gauge fields into complex fields. Only
conditions such as V], = —V,, could be preserved under
gauge transformations provided that g is unitary: g" x g =
g xg" = 1.Itis not possible to restrict V,, to be real or imag-
inary to get the orthogonal or symplectic gauge groups as
these properties are not preserved by the star product.

We postulate (see Majewski, 2008c) that the curvature
associated with this rotational gauge field can be related to
the disclination density ©,, in the following way:

RZz:b = ]‘-‘Zb,u - sz,ll + I‘Zcrzb - I‘icrzb, (15)
v 1 —1 vrs
O = 18 €'P9e" R, . (16)

The curvature tensor can be expressed in terms of the rota-
tional tensors as follows:
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Rijine = —2(wyjmg.ip + & Wijr Wipis)- (17)

This equation can be expressed in a spinor basis as (see Ma-
jewski, 2008c)

Xijkerrevx + Zurkerrérk + Zrrk€uce ke

+ Xpprxenerx = =2 + & wWikwips)s  (18)

where X and = are curvature spinors, the tilde denotes a com-
plex conjugation, and €, denotes the symplectic form or the
fundamental spinor. Because of the disclination—curvature
analogy (see Majewski, 2008c), we refer to the aforemen-
tioned curvature spinors as to disclination spinors.

To keep things simple, we will use an operator formula-
tion of the noncommutativity approach. In order to describe
the deformed product, we use a commutator of coordinates in
the following form:

[x#, xV], = xF s x¥ —x¥ ok xt = i®(x),  (19)

where ®#¥(x) is an antisymmetric matrix and has the follow-
ing form:

0 @ 0 0

—®' 0 0 0
=10 0 0 @ (20)

0 0 —& 0

We should add that NC spaces are characterized by the
noncommutativity of the spatial coordinates expressed by
equation (20). This equation resembles the canonical com-
mutation formula [x, p] = i in quantum physics and yields
a space-space uncertainty relation. Thus, the various singu-
larities that exist on commutative spaces could resolve on NC
spaces. This is one of the important features of NC theories
and helps understand some new physical objects, for exam-
ple, visible Dirac-like strings, fluxons, and instantons. These
instantons derive their existence mainly from the resolution
of small instanton singularities of the complete instanton
moduli space. The solitons in NC spaces are sometimes so
accessible that we can calculate many physical quantities,
such as the soliton energy, soliton width, soliton speed, some
fluctuations around the soliton configuration, and many
more. This is also due to the properties of NC spaces that
the singular configuration becomes smooth enough and
suitable for practical calculations. In this article, we discuss
NC solitons with applications to earthquake dynamics (Ma-
jewski, 2008b).

Derivation of the NC ASDYM-Like Equation
from a System of Linear Operator Equations

The NC ASDYM-like equations for rotational fields in
the earthquake source zone can be formulated based on the
following procedure given by Gilson et al. (2009) and Ha-

manaka (2005, 2006) in a context of supergravity. We start
from the following system of linear operator equations:

M* W = (D, —AD;) * ¥ =0, (21)

A*x W = (D, — AD;) * ¥ =0, (22)

where M and A are operators, D, denotes a covariant de-
rivative, and A is a spectral parameter.

We can illustrate the previous system of equations with
the following example:

Z y _ 71/2 t—|—ix] xz—ix3

Because of space limitation, we cannot give more details
concerning all the steps in the derivations of the NC ASDYM-
like equation. We have only been able to sketch the main
ideas and concepts. Now, the compatibility condition for the
system (21) and (22) takes the form

[EIR * i)’I]* = [Dy’Dz]* + )‘([Dz»DE]* - [Dvaf]*)
+ XDz Dy, =0 24)

thus,

R v = VV.,M - V,u,.l/ + [V;u Vu]*a (25)

I

R _mZZ:O_)[D)'vDi]*=[Dz’DZ]*7 (26)

vy

ERzy = [Dszy]* =0, (27)

and, finally, we obtain the NC ASDYM equation for rotational
motions derived from the system (21) and (22) in the follow-
ing form:

R:; =I[D:. Dsl, = 0. (28)

Rotational Seismic Soliton Equations Resulting
from the Noncommutative (Anti-) Self-Dual
Yang—Mills-Like Equation (NC ASDYM)

We consider NC seismic solitons. This exposition will
pioneer a new approach to seismic waves. We have adopted
the NC ASDYM-like equations to model rotational processes
occurring in the earthquake source zone. Our main interest is
focused on modeling rotational seismic-wave processes. It
was first conjectured by Ward (1986) that in both commu-
tative and NC cases the ASDYM equations after symmetry
reductions lead to integrable equations with soliton solutions.
After applying the Bicklund transformations and solution
generating techniques in the form of Atiyah—Ward ansatz so-
lutions in terms of quasi-determinants to the NC ASDYM-like
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equation describing rotational seismic waves, we can ob-
tain a plethora of rotational seismic soliton equations, for
example, the sine-Gordon equation (SG), Klein—Gordon
equation (KG), Korteweg—de Vries equation (KdV), modi-
fied KdV equation (mKdV), perturbed KdV equation
(pKdV), Kadomtsev—Petviashvili equation (KP), two Bous-
sinesq equations, doubly dispersive equation (DDE), non-
linear Schrodinger equation (NLS), and Gross—Pitaevskiy
equation (GP).

Now, we will adopt for the rotational seismic field the
procedure from an exposition given by Gilson et al. (2009)
and Hamanaka (2006) in a context of supergravity. We will
consider a reduction of the NC ASDYM-like equations to the
NC KdV equation. First, we consider a dimensional reduction
and gauge fixing

09.2,2) = (1.x) = (y + 7. 2), (29)
where x, y, and z are the spatial coordinates and y and 7 are
their complex conjugates.

The reduced NC ASDYM-like equation for rotational po-
tentials is as follows:

[Vy?VZ]* =0, (30)
Vi—V, +[V,, V], =0. (32)

Denoting that ¢ = ¢(x,t) and ¢’ = x, where x, y,
and z are the spatial coordinates and ¢ , are the components
of the angular displacement, we consider the following
reduction:

_ ¢ -1 _
V),—(¢,+¢*¢ —¢)’ V; =0, (33)
V:(%¢,,+¢,*¢ _¢/ )
C\B@". PP —5¢ P

(34)
v

(00
=\t o)

After some algebraic calculations and bearing in mind that

w=2" = 28—¢ and [f,x] =

9 iP(x), (35)

we can obtain the NC KdV equation for rotational seis-
mic waves

3
ow 10w 3(8 8w)=0 (36)

E. Majewski

that has N-soliton solutions in the form

0\ o
w_zaxz( ) Qs (37)

where Q,, = |Q(f. .... B,) ... is a quasi-determinant of the
Wronskian (Hamanaka 2005,2006; Gilson et al., 2009), and

ﬁn = exXp ’Y(x? nn) + Cn exp[—'y(x, 7711)]’ (38)

where v(x,n,) = xn + t’.

For comparison, let us recall here a commutative
KdV equation for seismic twist solitons in the form (Ma-
jewski, 2006b)

8w(w) 1 83(.«)(‘4,) 3 OUJ(W
or 4 o 290 oy

= 0. (39)

From this we learn something interesting. Using the afore-
mentioned solution generating technique, we can obtain the
following NC KP equation for seismic spin solitons:

o T4 ox T R SR

30 (0w ] 3, (PP
= 4[(.0, 0; ( il 48x 5 ) (40)

The NC Burgers equation for seismic twist solitons can be
expressed as follows:

4

0w,y Pwiy
L

C, + 1) W) * W)

o @1)

= (C C,—1 :
(C1 + Cy = Dwyy * o

where C; and C, are constants.
The NC Calogero—Bogoyavlanskii—Schiff equation for
seismic spin solitons takes the form

8w[x] 4o 1 6 (.U[Y] 4z 8(.«)“] « n " ow [q]
W) w)
or " 4ox*9y 2\ gy WM

a
1 &.u[s] 1 80)[31 8 w[S
4 Ox dy 4

1 (“)w[s]
oo oo (5 )L}; )

The NC approach to the ASDYM-like equations is very
promising because it provides us with a plethora of seis-
mic soliton equations (illustrated in Fig. 4) and allows us
to avoid some singularities (Hamanaka, 2005, 2006; Gilson
et al., 2009).

8&)[3]
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Figure 4.
source region and resulting rotational seismic soliton equations
(modified from Hamanaka, 2006).

The NC ASDYM-like equations for the earthquake

Rotational Seismic Solitons Branching
off Dispersion Curves

Now, we present our results in the wavenumber w versus
the wave vector k graph. They are depicted in Figure 5. We
plotted the dispersion curves of the seismic P and S waves. In
addition, we drew the dispersion curves of two rotational
waves, namely the rotational longitudinal wave PR and the
rotational transverse wave SR. The diagram illustrates how
rotational seismic solitons branch off the dispersion curves
corresponding to rotational seismic waves.

Wer=Wgg

*Boussinesq

Figure 5. Rotational seismic solitons branching off dispersion
curves for rotational seismic PR and SR waves in an elastic Earth
with defects.
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The Nonlinear Schrodinger Equation in Terms
of Twistors Applied to Seismic Spin
and Twist Solitons

Following Majewski (2008d), we consider a soliton
wave function W, which is a complex function of twistor Z.
We assume that the soliton wave function does not depend on
the complex conjugate ZQ; thus, we have

2~ (43)

In such a case, the complex conjugate Z,, can play a part of a
differentiation operator acting on the soliton wave function:

oV

2 > ~h o

(44)

The twistor Z* can be also treated as a multiplication opera-
tor, that is,

(2010 — zoW. (45)

The twistor and its complex conjugate Z“ and ZQ, re-
spectively, can exchange their roles. In such a situation,
the soliton wave function W will be a function of the complex
conjugate ZO. We can denote Za as its dual twistor W, and
Z* as W“, then the soliton wave function W will be a function
of the dual twistor W ,. Thus, the dual multiplication and dif-
ferentiation operators [W ] and [W®], respectively, act on the
soliton wave function according to the formulas

WV — W, (46)
and
A ov

By analogy to these quantum physics considerations, we are
in a position to propose the following NLS for seismic spin or
twist amplitudes in terms of twistors:
o P
iA— = —1?

= Sz + B|U]*U, (48)

where 7 is time, A and B are constant coefficients, and v is
the seismic-wave speed. Solutions to the previous equation
can describe seismic spin or twist Schrodinger’s solitons.
These solitons are spin or twist pulses. If we apply it to an
earthquake fault, the equation can describe the so-called tec-
tonic solitons, that is, the rotational seismic solitons that can
be excited by past earthquake processes and may propagate
slowly along the earthquake fault to trigger new earthquakes.
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Figure 6. Illustration of rotational seismic-wave propagation in
a twistor space-time (Majewski, 2008d). The line denoted by Z rep-
resents a twistor that is referred to as a worldline or a seismic ray.
The time cone at point R is a null future cone that contains future
events. The time cone at point S is a null past cone that contains past
events (modified from Belinski and Verdaguer, 2001).
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Application of a Robinson Congruence to Visualize
the Motion of the Rotational Seismic Solitons

Figure 6 depicts rotational seismic-wave propagation
in a twistor space-time. A twistor Z is described here as a
worldline or a seismic ray. An inspiration for Penrose (1968,
1983) who was seeking a visualization of Ivor Robinson con-
gruence, was a special geometrical construction for finding
solutions to Maxwell’s free-space equations. Maxwell’s elec-
tromagnetic fields are nonsingular, shear free, geodetic, and
twisting. Thus, Maxwell’s fields are suitable to describe ro-
tations. Robinson’s approach consists in constructing his
solutions on a twisting shear-free congruence of light rays
(family of null lines). Such a family of null straight lines
(similar to seismic rays) whose tangent directions constitute
this field is defined as the Robinson congruence (see Penrose
and Rindler, 1984).

Figure 7 depicts a motion of the seismic twist soliton in
space-time. It shows three time slices of the tangents to a
twisting family of circles at time ¢t=0, t =1, and
t = t,. The figure is based on Penrose geometrical visualiza-
tion of a Robinson congruence (Penrose and Rindler, 1986;
Majewski, 2008d).

Conclusions

We presented briefly a nonlinear seismic-wave theory
and attempted to derive seismic spin and twist solitons.
The NC ASDYM equations were adopted to describe pro-
cesses in the earthquake source zone. The NC ASDYM fields
were identified as rotational fields, for example, spin and
twist fields. The main conclusion here is that spinors can
be used successfully to describe seismic spin and twist soli-
tons in twistor spaces. Moreover, the twistor spaces can be

M ! INK, N I\I\I\ N INK,
i J
\, 1 NN N 0 AL, , 1 N
fk/ = Sl NS = % R u
SR o — < N~ oSS < ~ i >
D 7N X SN gl T N o - T NS !
=N v N\ - =2
\, AY \,
YN AER AR
\ N\ N\,
. - ———— — —— — . . . . S— e e e e — . e e, e s . . S . —
i
|
s >
t=0 t=t¢t; t=t, t =time

Figure 7.

[lustration of the motion of the seismic twist soliton in space-time. The first time slice of the tangents to a twisting family of

linked circles is visualized at time ¢ = 0; the second time slice is shown at time ¢ = ¢;; the third time slice is shown at time ¢ = t,; the twist
configuration moves to the right along the time axis with velocity ». The figure is a modification of Penrose geometrical visualization of a

Robinson congruence (modified from Penrose and Rindler, 1986).
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helpful to characterize motions and interactions of spin and
twist solitons. Using the formalisms of the Yang—Mills the-
ory and twistor theory, we can get much deeper insight into
rotational seismic-wave processes and spin and twist soli-
tons. In addition, starting from a Penrose twistor quantization
theory, we proposed a NLS for seismic spin and twist ampli-
tudes in terms of twistors.

On a final note, twistor theory has a complex struc-
ture, whose complete content is not yet investigated. It is
mathematical structure but deeply embedded in physics. It
incorporates and connects crucial principles of physics. Un-
doubtedly there are many unsolved problems including seis-
mic spin entropy, spin entropy current, spin density, and
the propagation of spin and twist solitons in curved twistor
spaces that need to be analyzed.
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