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Waves in Linear Elastic Media with Microrotations,

Part 1: Isotropic Full Cosserat Model

by Mikhail Kulesh

Abstract In this article, we consider a problem of the surface elastic wave propa-
gation within the framework of the isotropic Cosserat continuum. The medium de-
formation in this model is described not only by the displacement vector but also by a
kinematically independent rotation vector. We discuss the general solution of equa-
tions of motion. This solution describes the following wave types: longitudinal and
transverse bulk waves, Rayleigh wave, surface transverse wave in a half-space as well
as Lamb wave and transverse wave in a thin layer. Within the framework of Cosserat
continuum, both the Rayleigh and surface transverse waves in a half-space are dis-
persive. The transverse wave in a thin layer and the surface transverse wave in a half-
space do not have any analogies in the classical elasticity theory.

Introduction

The interpretation of seismic data is usually based on a
physical model of a continuous medium. Probably the most
popular and well-investigated model is the theory of classical
elasticity. Its applications to seismology are described in de-
tail by Aki and Richards (2002). In this model, the motion of
medium particles is fully determined by the vector of transla-
tional displacement, and the wave propagation is described
by the Lamé linear differential equations. Generalizations of
this model for plastic, viscoelastic, thermoelastic, and hetero-
geneous media are also widely used. However, as with the
classical elasticity theory, the particle motion in all these
models is described by the displacement vector u only.

However, there are works based on experimental data
(e.g., Twiss et al., 1993) that underline the importance of
the rotational degrees of freedom in seismology. The ques-
tion if rotations are necessary in seismology for the descrip-
tion of the medium behavior can be answered by a correctly
performed experiment using modern experimental equip-
ment. Currently, there are mechanical (Nigbor, 1994) and
laser (Igel et al., 2005) sensors that allow direct measure-
ments of rotation velocities in three orthogonal directions.
This equipment is currently (though not widely) used in seis-
mic and geophysical studies. Therefore, the question arises,
how can these rotations be described in the framework of an
elastic medium?

In the deformation process, generally speaking, the
macrorotations corresponding to the vortex deformation
1=2 rot u are always present. However, the proper rotational
dynamics of medium particles, microspin, can also exist. For
the first time the theory of a continuum with rotational inter-
action of particles was suggested by Cosserat and Cosserat

(1909). In this theory, the stress tensor is asymmetric, and a
couple-stress tensor describing torque interaction is intro-
duced. The deformation of the medium is described not only
by the symmetric Cauchy–Green strain tensor but also by
other asymmetric tensors depending on an angular and a
mixed type of strain. In the second half of the twentieth cen-
tury, this theory was developed in various works. This class
of theories is called Cosserat-type models or asymmetric
elasticity theories.

In many papers (see, for example, Savin et al., 1970),
it is assumed that the components of the rotation and dis-
placement vectors are linked by a relation that corresponds
to the classical theory of elasticity or the Cosserat pseudo-
continuum theory, θ � 1=2 rotu, but the stress tensor is still
asymmetric.

In the full linear Cosserat theory described by Nowacki
(1975) and Eringen (1998), the rotation vector θ and the
displacement vector u are kinematically independent. On
the one hand, this leads to an increase in the number of nec-
essary material parameters. On the other, from a physical
point of view, the full theory is more realistic than the Cos-
serat pseudocontinuum theory. However, there are still no
experimental data on the nature of the relationship between
the displacement and rotation vectors.

Wave experiments, especially in geological media, pro-
vide information for the identification of models of asym-
metric media. Such experiments have been performed; in
particular, results of ultrasonic studies of homogeneous
media were used to identify the Le Roux model and the
Cosserat pseudocontinuum model by Erofeev (1999) and to
identify the linear Cosserat continuum model by Gauthier
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and Jahsman (1981) and Lakes (1995). Geological media are
more complex subjects of research because several types of
waves are simultaneously excited and recorded in them,
longitudinal and transverse direct and reflected bulk waves,
Rayleigh waves, Love waves, Lamb, and Stonely waves.

In this part of the article, we discuss the generalization of
some solutions for plane waves in a Cosserat continuum. We
consider longitudinal and transverse bulk waves of displace-
ment and rotation (Kulesh et al., 2008), Rayleigh wave (Ku-
lesh et al., 2005), surface transverse wave in the half-space
(Kulesh et al., 2006), and the Lamb wave as well as the trans-
verse wave in a thin layer (Kulesh et al., 2007). The trans-
verse wave in a thin layer and surface transverse wave in the
half-space do not have any analogies in the classical elas-
ticity theory. This article summarizes the results obtained
in the four works cited previously. First, we present basic
solutions in a different form from those discussed by Eringen
(1998) and Nowacki (1975) because our form is more con-
venient for the application purposes. Second, we give the
graphical illustration and physical interpretation, which al-
lows us to understand the character of the solutions, its
similarities, differences from the classical theory, and typi-
cal features of the medium behavior.

The Basic Equations for the Cosserat Medium

Each material point in the asymmetric theory of elastic-
ity within the framework of the Cosserat medium is an in-
finitesimal solid that has an orientation. The solid load is
transmitted by distributed force p � n · ~σ and distributed
moment of force m � n · ~μ, which have an effect on a
surface with a normal vector u. In this case, a particle’s
kinematics are described by the displacement vector u �
fux; uy; uzg of the center of mass and by the rotation vector
θ � fθx; θy; θzg. In the case of the Cosserat medium, both
vectors are continuous functions of spatial coordinates and
time. Thus, we describe the elastic Cosserat continuum by
the following tensors and equations (Nowacki, 1975):

• Asymmetric strain tensor ~γ � ∇u � ~E · θ and asymmetric
torsion bending tensor ~χ � ∇θ,

• Asymmetric stress tensor ~σ � 2μ ~γ�S� � 2α ~γ�A� � λI1� ~γ� ~e
and asymmetric couple-stress tensor ~μ � 2γ ~χ�S� �
2ε ~χ�A� � βI1� ~χ� ~e, and

• Equations of motion for the case of spherical inertia tensor
j ~e (j is the inertia moment density, ~e is the unit tensor) and
zero mass forces and torques

�2μ� λ�grad divu � �μ� α�rot rotu� 2α rotθ � ρ �u;

�β � 2γ�grad divθ � �γ � ε�rot rotθ� 2α rotu

�4αθ � j �θ:

(1)

In equations (1), μ and λ are the Lamé constants; α, β, γ,
and ε are the physical constants of a material in the frame-
work of the Cosserat medium; ρ is the density; �:��S� and

�:��A� denote the symmetric and antisymmetric parts of ten-
sor; ~E is the Levi–Civita tensor of the third rank; and I1�:� is
the first invariant of the tensor. It is important to note that,
unlike the classical theory of elasticity, the displacement vec-
tor u and the rotation vector θ are independent.

Construction of the General Solution
of a Plane Wave

Let us consider a half-space or a thin layer whose sur-
faces are free from load when there are no mass forces and
moments. We choose the x and y Cartesian axes along the
surface and the z axis upward. Let the wave propagate in
the positive x direction.

Unlike previous works (Lyalin et al., 1982; Eringen,
1998) where only monochromatic waves are considered,
here we represent the general solution of equation (1) in the
form of Fourier integrals of all components of the displace-
ment and rotation vectors, which means that the solution is
represented as a plane wave packet limited in the time and
Fourier domains:

ur�x; z; t; k� �
Z ∞
�∞

Ur�z�ei�kx�ωt�ŝ0�ω� dω;

θr�x; z; t; k� �
Z ∞
�∞

Wr�z�ei�kx�ωt�ŝ0�ω� dω;
(2)

where i is the imaginary unit, k is the wavenumber, ω is the
circular frequency, t is the time, Ur�z� and Wr�z� are ampli-
tude functions depending on depth only, and ŝ0�ω� is the
complex spectral function corresponding to the Fourier spec-
trum of a source signal that determines the wave packet form.
The subscript r takes values x, y, and z.

It is expedient to use the continuous Fourier transform of
equations (1) and (2):

�2μ� λ�grad divû � �μ� α�rot rotû� 2α rotθ̂

�ρω2û � 0;

�β � 2γ�grad divθ̂ � �γ � ε�rot rotθ̂� 2α rotû

��4α � jω2�θ̂ � 0;

û � fUx�z�; Uy�z�; Uz�z�gTeikxŝ0�ω�;
θ̂ � fWx�z�; Wy�z�;Wz�z�gTeikxŝ0�ω�:

(3)

For the convenience of representation, we reduce all the
quantities to the dimensionless form using the characteristic
length X0 and the characteristic frequency ω0 and introduce
some dimensionless variables, one of which depends on the
characteristic length:

A � X0

�������������������
μ

B�γ � ε�
r

; B � α� μ
α

;

C � γ � ε
γ � ε

; F � B � 1

A2B
:
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Dynamic effects are taken into account by using the dimen-
sionless velocities:

C2
1 �

λ� 2μ
ρX2

0ω
2
0

; C2
2 �

μ
ρX2

0ω
2
0

; C2
3 �

B

B � 1
C2
2;

C2
4 �

γ � ε
jX2

0ω
2
0

; C2
5 �

β � 2γ
jX2

0ω
2
0

:

(4)

To obtain the solution of equations of motion, we use
the method that is exhaustively described by Kulesh et al.
(2005, 2006) as applied to equations (3). If we substitute the
variables u and θ̂ into equation (3), we obtain a system of dif-
ferential equations for functions Ur�z� and Wr�z�. When we
solve these equations, we keep not only the terms showing
depth dependent decay but also all partial solutions. After we
found functions Ur�z� and Wr�z� and pass on to the time
domain using representation (2), we can write the general
solution of equation (1) in the following form:

ux�x; z; t� �
Z ∞
�∞

fD1ike
�ν1z �D2ν2e�ν2z �D3ν3e�ν3z �D4ike

ν1z �D5ν2eν2z �D6ν3eν3zgei�kx�ωt�ŝ0�ω�dω;

uy�x; z; t� �
F

2

Z ∞
�∞

�
E2

�
Am � ω2

C2
4

� 4

F

�
e�ξ2z � E3

�
Ap �

ω2

C2
4

� 4

F

�
e�ξ3z � E5

�
Am � ω2

C2
4

� 4

F

�
eξ2z

� E6

�
Ap �

ω2

C2
4

� 4

F

�
eξ3z

�
ei�kx�ωt�ŝ0�ω�dω;

uz�x; z; t� �
Z ∞
�∞

f�D1ν1e�ν1z �D2ike
�ν2z �D3ike

�ν3z �D4ν1eν1z �D5ike
ν2z �D6ike

ν3zgei�kx�ωt�ŝ0�ω�dω;

θx�x; z; t� �
Z ∞
�∞

fE1ike
�ξ1z � E2ξ2e�ξ2z � E3ξ3e�ξ3z � E4ike

ξ1z � E5ξ2eξ2z � E6ξ3eξ3zgei�kx�ωt�ŝ0�ω�dω;

θy�x; z; t� �
B

2

Z ∞
�∞

�
D2

�
Am � ω2

C2
3

�
e�ν2z �D3

�
Ap �

ω2

C2
3

�
e�ν3z �D5

�
Am � ω2

C2
3

�
eν2z

�D6

�
Ap �

ω2

C2
3

�
eν3z

�
ei�kx�ωt�ŝ0�ω�dω;

θz�x; z; t� �
Z ∞
�∞

f�E1ξ1e�ξ1z � E2ike
�ξ2z � E3ike

�ξ3z � E4ξ1eξ1z � E5ike
ξ2z � E6ike

ξ3zgei�kx�ωt�ŝ0�ω�dω:

(5)

The constants Ds and Es (s � 1…6) must be deter-
mined from the boundary conditions, while the exponents
of the amplitude functions, νr and ξr, (r � 1…3) are given
by the expressions:

ν1 �
����������������
k2 � ω2

C2
1

s
; ξ1 �

��������������������������������
k2 � ω2

C2
5

� 4C2
4

FC2
5

s
; ν2 � ξ2 �

�����������������
k2 � Am

q
; ν3 � ξ3 �

�����������������
k2 � Ap

q
;

Ap;m � C2
3 � C2

4

2C2
3C

2
4

ω2 � 2A2 �
��������������������������������������������������������������������������������������������������������������������
�C2

3 � C2
4�2

4C4
3C

4
4

ω4 � 2A2�C2
2C

2
3 � 2C2

3C
2
4 � C2

2C
2
4�

C2
2C

2
3C

2
4

ω2 � 4A4:

s

It is important to note that these exponents depend on two
free variables, wavenumber k and circular frequency ω.
The relationship between these two variables will be de-
fined later by analyzing dispersion equations of particular
wave types.

Below, we will give dependences of the wavenumber
on frequency as well as plot corresponding dispersion
curves for the following values of material parameters,
λ � 2:8 · 1010 N=m2, μ � 4 · 109 N=m2, ρ � 105 kg=m3,
α � 2 · 109 N=m2, β � 108 N, γ � 1:936 · 108 N, ε �
3:0464 · 109 N, and j � 104 kg=m.

Analytical Solutions for Body Waves

Solutions for bulk longitudinal waves are obtained
directly from equation (3) using the conditions that ampli-
tude functions are independent from vertical coordinate z:
Ux�z� � Ux,Uy�z� � 0,Uz�z� � 0,Wx�z� � Wx,Wy�z� �
0, and Wz�z� � 0, where z∈R. After substituting these con-
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ditions in equation (3), two independent dispersion equations
are derived, one of which corresponds to the longitudinal
wave of displacements and the other to the longitudinal wave
of rotations:

�ρω2 � k2�λ� 2μ��Ux � 0;
�jω2 � k2�β � 2γ� � 4α�Wx � 0:

Using dimensionless parameters C1 and C5 as given in
equation (4), we can rewrite and solve these equations in a
dimensionless form that gives us two dispersion curves:

k1�ω� �
ω
C1

; k2�ω� �
����������������
ω2

C2
5

� k20

s
;

k0 � 2X0

���������������
α

β � 2γ

r
:

(6)

To plot these curves, we pass on to dimension form,
using X0 � 1 and ω0 � 1. Figure 1a shows the phase ve-
locities Cp;1 � ω=k1�ω� and Cp;2 � ω=k2�ω�. The solid line
depicts well-known dispersion curve Cp;1 of the longitudi-
nal wave of displacements. At the same time, an indepen-
dent and dispersed wave of rotations appears in the medium
(dashed line) that has the phase velocity Cp;2 and the
lower frequency w0 � 2

��������
α=j

p
(vertical dotted line). As seen,

the velocity C5 (horizontal dotted line) is limiting for the ve-
locity curve of this rotation wave. Thus, in addition to the
longitudinal wave velocity C1, we should introduce the pa-
rameter C5 associated with the velocity of the longitudinal
wave of rotations. Besides, the latter wave has a forbidden
frequency domain characterized by the quantity k0, which is
the limit wavenumber.

A solution for the transverse plane wave can be obtained
similarly:

k3�ω� �
������
Ap

p
; k4�ω� �

�������
Am

p
: (7)

Equation (7) has the following interpretation. First, the
transverse wave in the Cosserat continuum has two wave
modes with the wavenumbers k3�ω� and k4�ω�. (For an
isotropic medium, the horizontally and vertically polarized
transverse waves are indistinguishable; therefore, each of
them has two wave modes.) This distinguishes equation (7)
from the classical case in which there is only one wave mode.
Second, both wave modes have dispersion, which is seen in
Figure 1b. One of the modes is characterized by a lower criti-
cal frequency, but the frequency in this case is determined
from equation (7) and is not equal to the critical frequency
w0 of the longitudinal wave. It can also be concluded that the
dimensionless velocity parameters C3 and C4 used in solu-
tion (5) are asymptotic velocities of transverse bulk wave
modes at ω → ∞.

Special Cases: Rayleigh and Lamb Waves

As a particular case, expressions (5) describe well-
investigated solutions for the surface Rayleigh wave in the
elastic half-space. Because the amplitude of displacement
components of Rayleigh wave decays with depth (along the
z axis), the constants for the exponent terms with positive
indices in the expressions in solution (5) must be zero:
D4 � D5 � D6 � 0 and E4 � E5 � E6 � 0. The boundary
conditions at the surface z � 0 require normal forces and
moments to be zero

σzxjz�0 � 0; σzyjz�0 � 0; σzzjz�0 � 0;
μzxjz�0 � 0; μzyjz�0 � 0; μzzjz�0 � 0:

(8)

The substitution of solution (5) into the boundary con-
ditions (8) at fixed k and ω, yields two independent solutions
describing two different waves:

1. A Rayleigh wave with components ux, uz, and
θy is determined by the dispersion equation
det�Mr�ν1; ν2; ν3�� � 0, where (Kulesh et al., 2005)
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Figure 1. Numerical example illustrating the behavior of (a) longitudinal and (b) transverse bulk waves in the Cosserat continuum.
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Mr�p1; p2; p3�

�
2k2 � ω2

C2
2

�2ikp2 �2ikp3

2ikp1 2k2 � ω2

C2
2

2k2 � ω2

C2
2

0 p2�Am � ω2

C2
3

� p3�Ap � ω2

C2
3

�

2
6664

3
7775:

2. A surface transverse wave with components uy, θx,
and θz has the following dispersion equation:
det�Mt�ξ1; ξ2; ξ3�� � 0, where (Kulesh et al., 2006)

Mt�p1; p2; p3� �
2ik
1�B p2�2� AmC

2
4
�ω2

2A2C2
4

� p3�2� ApC
2
4
�ω2

2A2C2
4

�
ikp1�1� C� p2

2 � k2C p2
3 � k2C

�C2
5

C2
4

� C � 1�k2 � p2
1

C2
5

C2
4

ikp2�1� C� ikp3�1� C�

2
664

3
775:

Figures 2 and 3 show wavenumbers k�ω� and normal-
ized phase velocities Cp�ω�=C2 for Rayleigh and surface
transverse waves in the classical (dotted lines) and asym-

metric media (solid lines). The dashed lines correspond to
C2 velocity. Thus, in the half-space whose dynamic behavior
is described by the Cosserat model, in addition to the elliptic
surface Rayleigh wave, it is also possible to observe another
wave type, a surface wave whose one component is parallel
to the boundary surface and perpendicular to the propagation
direction. This wave mode does not have analogues in the
classical elasticity theory. Both Rayleigh and surface trans-
verse waves have the dispersive character of propagation in
the half-space that also differs from the classical case.

To investigate how a wave propagates in a free loaded
plate with the thickness 2H, let us consider the characteristic
length X0 � H. The boundary conditions in the dimension-
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Figure 2. Numerical example illustrating the behavior of (a) wavenumber and (b) phase velocity for a Rayleigh wave in the Cosserat
continuum.
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Figure 3. Numerical example illustrating the behavior of (a) wavenumber and (b) phase velocity for a surface transverse wave in the
Cosserat continuum.
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less form at the surfaces z � �1 require the normal forces
and moments to be zero:

σzxjz��1 � 0; σzyjz��1 � 0; σzzjz��1 � 0;
μzxjz��1 � 0; μzyjz��1 � 0; μzzjz��1 � 0:

(9)

The substitution of solution (5) into the boundary con-
ditions (9) at fixed k and ω gives us two independent solu-
tions for two wave types:

1. A Lamb wave with components ux, uz, and θy is de-
scribed by the dispersion equation (Kulesh et al., 2007)

det
�
Mr�ν1; ν2; ν3� · diag�e�νn� Mr��ν1;�ν2;�ν3� · diag�eνn�
Mr�ν1; ν2; ν3� · diag�eνn� Mr��ν1;�ν2;�ν3� · diag�e�νn�

�
� 0:

2. A transverse wave with components uy, θx, and θz has the
following dispersion equation (Kulesh et al., 2007):

det
�
Mt�ξ1; ξ2; ξ3� · diag�e�ξn� Mt��ξ1;�ξ2;�ξ3� · diag�eξn�
Mt�ξ1; ξ2; ξ3� · diag�eξn� Mt��ξ1;�ξ2;�ξ3� · diag�e�ξn�

�
� 0:

In the previous expressions, diag�e�pn�∈C3×3 is the di-
agonal matrix, and �·� is the scalar product.

Figure 4 shows wavenumbers k�ω� and normalized
phase velocities Cp�ω�=C2 for the Lamb wave in the classi-
cal medium (dotted lines) and in the Cosserat medium (solid
lines). The dashed lines correspond to C1 and C2 velocities
of the classical medium. In Figure 5, the behavior is dem-
onstrated for the new transverse wave in a layer. Thus, a
qualitatively new wave mode with only one displacement
component exists in a free loaded plate within the framework
of the Cosserat medium besides well-investigated Lamb
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Figure 4. Numerical example illustrating the behavior of (a) wavenumber and (b) phase velocity for a Lamb wave in the Cosserat
continuum.
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Figure 5. Numerical example illustrating the behavior of (a) wavenumber and (b) phase velocity for a transverse wave in the Cosserat
continuum.
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wave. As in the case of surface transverse wave, this new
mode also does not have any analogy in the classical elas-
ticity theory.

Conclusions

In this study, we discussed solutions for longitudinal
and transverse bulk waves, Rayleigh wave, surface trans-
verse wave in a half-space as well as Lamb wave and trans-
verse wave in a thin layer within the framework of the
isotropic Cosserat continuum.

Problems on bulk wave propagation (Fig. 1) are rather
interesting from the viewpoint of interpretation of new pa-
rameters introduced for the dimensionless notation of wave
solutions. However, these problems have no prospects from
the standpoint of experimental implementation.

In contrast to bulk waves, surface waves for the elastic
half-space have a considerable experimental potential. First,
the dispersion analysis of experimental three-component
seismograms allows construction of experimental dispersion
curves and comparison with theoretical ones (Figs. 2 and 4).
Second, rotation sensors make it possible to trace a relation
between displacement and rotation components according to
solution (5). Third, the presence of a transverse surface wave
in the Cosserat continuum (Figs. 3 and 5) can also be the
subject of experimental study with the use of sensors im-
bedded at different depths.

Data and Resources

Some plots were made using the Matlab Web site
(http://www.mathworks.com/products/matlab/, last accessed
June 2008).
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