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Abstract The displacement of each part of a seismometer’s frame is identical for a
purely translational motion. However, in the presence of rotary motion the different
parts of a seismometer’s frame will undergo different displacements. The definition of
the sensitivity of the seismometer then requires the selection of a reference location on
the seismometer’s frame to which the sensitivity is attributed. This location does not
necessarily coincide with the hinge and can be selected arbitrarily. The appropriate
choice is to attribute the output signal to the location of the point mass of the equiva-
lent simple pendulum (or reduced pendulum), which usually lies within the seis-
mometer’s casing. Rotations of the sensor about this location produce no output signal
due to angular or centripetal acceleration. The sensor then appears sensitive to linear
acceleration only.

Introduction

In the context of rotational seismology possibilities for
the observation of rotary components of seismic displace-
ment are frequently discussed. Their observation requires
appropriate sensors, which are sensitive to either angular ve-
locity like ring laser gyroscopes (Stedman et al., 1995) or to
angular acceleration. In the present study I specifically dis-
cuss the sensitivity of pendulum seismometers to angular ac-
celeration. Angular acceleration is occasionally considered
in studies of strong-motion observations in the near field
of earthquakes. In contrast to teleseismic observations in
the far field, where angular acceleration can safely be ig-
nored, contributions near earthquake faults can be observa-
ble. Also, structures can respond with significant torsional
vibrations to any kind of ground shaking. For this reason
angular acceleration should be a supplementary recording
when monitoring the seismic response of buildings. Obser-
vation of angular acceleration is also discussed in the context
of inferring horizontal ground displacement from seismic
recordings. The output signal of horizontal component seis-
mometers can be significantly contaminated by ground tilt
induced gravity, which inhibits the deduction of displace-
ment (e.g., Graizer, 2006). The record can be corrected for
the tilt-induced contribution with an independent record of
the tilt angle, which theoretically could be obtained from
an observation of angular acceleration. With this background
Bradner and Reichle (1973) and Graizer (2009b) discuss po-
tential configurations of inertial sensors to observe angular
acceleration.

Pendulum seismometers are primarily regarded as being
sensitive to translational acceleration. However, exposing
such an instrument to angular acceleration will in most cases
also result in an output signal. Appropriate terms, which de-

scribe the sensitivity to angular and centripetal acceleration,
appear in theoretical descriptions of pendulum seismometers.
For example, Byerly (1952) derives the full equation of mo-
tion based on the work by early pioneers of seismometry.
Rodgers (1968) extends this with a focus on the response
to tilt-induced gravity. In the present issue general expres-
sions for the response of pendulum seismometers are pre-
sented by Peters (2009) and Graizer (2009a,b).

While the meaning of the output signal in terms of a
component of linear acceleration is unique in the absence
of rotations, the partitioning into linear and angular contri-
butions becomes ambiguous in the presence of rotations.
The motions of the sensor must then be referred to a refer-
ence location in the seismometer’s frame, and the instru-
ment’s sensitivity will depend on the choice made for this
reference. I am not aware of any theoretical study of the re-
sponse of pendulum seismometers that would point out this
fact. It is common to refer all motion of the seismom-
eter’s frame to the location of the hinge, which, however,
is an arbitrary choice. Rodgers (1969) and Pillet and Virieux
(2007) explicitly discuss the sensitivity to angular accelera-
tion in this way. Consequently, they miss the fact that this
is ambiguous with respect to the reference location in the
seismometer’s frame and that it vanishes if the reference lo-
cation is chosen at the point mass of the equivalent simple
pendulum.

The equivalent simple pendulum has the whole mass of
the suspended body concentrated in a point mass and has the
same free period in a gravity field. This concept is known as
the reduced pendulum in the theory of the reversible pendu-
lum (Rodgers, 1969; Leybold, 2007). The location of the
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point mass of the equivalent simple pendulum is sometimes
referred to as center of oscillation (Byerly, 1952).

The intention of my study is to illuminate this non-
uniqueness and to show that pendulum seismometers can
be regarded as insensitive to angular and centripetal accelera-
tion as well. This is not only due to angular acceleration
being small in practical applications, but it can also be shown
in a mathematically rigorous way.

After two basic remarks regarding the problem under
consideration, I introduce a simplified model for a single
seismic pendulum sensor, which will be used for all sub-
sequent investigations. This model can already be used for
simple physical considerations that illustrate the inherent am-
biguity when discussing the partitioning of the pendulum’s
deflection into contributions resulting from translational and
angular acceleration. Subsequently, I derive this ambiguity
quantitatively and discuss aspects such as the customary per-
ception of seismic sensors, the effect of centripetal accelera-
tion, the behavior of linearly suspended sensors (geophones),
and the possibility to distinguish all six translational and ro-
tary degrees of freedom when using at least six sensors that
are suitably arranged within one rigid frame. Finally, the de-
mands for the design of a sensor for angular acceleration are
discussed.

Rigid-Body Motion

The motion of the seismometer’s frame with the ground
is the motion of a rigid body. In the absence of rotations (as is
customarily considered) all points on the frame undergo the
same motion (Fig. 1). In this case there is no difference as to
which point we attribute the acceleration derived from the
seismometer’s output signal. However, in the presence of ro-
tations the motion must be expressed by the translational dis-
placement of a reference point on the seismometer’s frame
and the rotation of the frame about this moving reference
point. The reference point can be understood as the origin
in a coordinate system that moves with the frame, and the
choice of its location within this system is entirely arbitrary.
Using a different reference point just equals the choice of a
different origin to express the kinematic motion, while the

motion itself remains the same. The rotary component is
not altered by the choice of a different origin, while the trans-
lational component can even vanish if the reference point
is appropriately chosen (Fig. 2). Aki and Richards (2002,
fig. 12.7) define the reference location (i.e., the origin of
the seismometer’s coordinate system) at the Earth’s center
to express all horizontal motions of the sensor along the
Earth’s surface by a pure rotation about the center of
the Earth.

Remarks on Ground Tilt

The sensitivity to angular acceleration must not be con-
fused with the sensitivity to ground tilt. Ground tilt couples
gravity into the horizontal components of seismometers (e.g.,
Wielandt, 2002, sec. 2.4). Gravity is a linear acceleration and
cannot be distinguished from translational linear acceleration
due to fundamental physics (i.e., the equivalence of gravita-
tional and inertial mass.) The theory of general relativity was
developed to unify both within one physical concept. In the
presence of gravity all terms that represent a component of
translational linear acceleration in the mathematical descrip-
tion given subsequently can also describe the effect of the
corresponding component of gravity if it is not compensated
by a suspension.

While the acceleration resulting from a periodic dis-
placement at a given amplitude decreases with the square of
the signal’s period (Forbriger, 2007), the tilt-induced accel-
eration remains constant. For this reason it becomes a neces-
sity to account for ground tilt when inferring true horizontal
ground displacement from long-period seismic records (e.g.,
Dahlen and Tromp, 1998, table 10.1; Yuan et al., 2005; Grai-
zer, 2006). This process can be successful only if the dis-
placement’s time history is known from observations of the
vertical component (Wielandt and Forbriger, 1999) or if the
tilt can be obtained reliably from independent observations

Figure 1. In the absence of rotations all locations in the seis-
mometer’s reference frame undergo the same displacement. It is
not necessary to define a reference location to which the motion
is attributed.

Figure 2. In the presence of rotations all locations in the seis-
mometer’s reference frame undergo a different displacement. To
quantify displacement, a reference location must be defined. The
angle of rotation about this reference location is independent of
the choice made. Translational displacement depends on the refer-
ence location and vanishes if the center of rotation is selected as the
reference.
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of angular acceleration. The latter is not possible with any
sensors for translational acceleration.

A Simple Model of the Pendulum Seismometer

In the present study I use a simplified model of the
seismometer that is appropriate to focus on the partitioning
between linear, angular, and centripetal acceleration. Simpli-
fication takes place in four respects: (1) Motion takes place in
only one plane (two translational degrees and one rotary
degree of freedom). (2) Gravity is ignored because it is in-
distinguishable from translational acceleration due to funda-
mental physics. (3) The pendulum experiences no restoring
force and no damping. Both would influence the frequency
response but not the partitioning of sensitivity at a given fre-
quency. (4) The pendulum will be held in its reference loca-
tion by a feedback mechanism, which is usual in modern
broadband seismometers. Hence, the orientation of the pen-
dulum with respect to the seismometer’s frame is constant.

Consider a simple single-component seismic sensor. A
sketch is displayed in Figure 3. The large box is the seis-
mometer’s frame. The sensor’s mass m is represented by
the gray pendulum body. It is an extended mass (not a point
mass) and, therefore, has a finite moment of inertia JS for
rotations centered on S (the center of mass). The pendulum
is supported by a hinge at location H, which constrains the
motion of the pendulum with respect to the seismometer’s
frame to one degree of freedom. The motion along this de-
gree of freedom (rotation centered on H) is measured by the
angle φ with respect to inertial space. The hinge is attached
to the seismometer’s frame and, thus, moves with the ground.
Without loss of generality all motions are restricted to trans-
lational displacement in the �x; y�-plane and to rotations cen-

tered on an axis perpendicular to the drawing plane, because
most forces due to motions in other directions are entirely
compensated by the hinge of the pendulum. Only centripetal
forces due to rotations about an axis that is parallel to the
�x; y�-plane can additionally contribute to the signal pro-
duced by the seismometer, as will be discussed in the follow-
ing section. The motion of the frame is expressed by the
displacement of the reference location R and rotations about
R. The location of R on the frame may be chosen arbitrarily.

The initial orientation of the sensor does not matter,
because gravity does not appear explicitly in this model.
The results are valid for horizontal as well as vertical or
any oblique pendulum seismometer component. Gravity can
easily be incorporated in the model as part of the linear ac-
celeration, as will be shown in the mathematical derivation in
the Translational Acceleration section.

A Qualitative Consideration of Inertia

The effect to be discussed by mathematical derivation
can already be understood from simple physical considera-
tions of inertia. In Figure 4a the seismometer is displayed in
its rest position. Now consider a motion of the seismometer’s
frame due to a ground motion. The pendulum body itself will
sense this due to a motion of the hinge H. If the hinge is
linearly displaced to the right (in the positive x direction),
the pendulum will be deflected clockwise relative to the
frame due to the inertia of the pendulum. This is the way
we usually understand a seismometer.

If the motion is such that the frame is rotated about the
hinge axis at H, the pendulum will rest at its position in in-
ertial space because the hinge is assumed to exert no torque
on the pendulum. We will observe a deflection relative to the
seismometer’s frame that equals the rotation of the frame.

Figure 3. A simple model for a single seismic sensor. The box
represents the frame of the seismometer, which moves rigidly with
the ground. The gray body represents the seismometer’s pendulum,
which constitutes the seismic mass with finite moment of inertia.
The center of mass is located at S. The pendulum is attached to
the frame by a hinge at H, which constrains the motion of the pen-
dulum to a single degree of freedom, that is, a rotation centered on
H. R defines the reference location to which motions of the seis-
mometer’s frame are referred. Without loss of generality all motions
are restricted to the �x; y� plane.

Figure 4. Rotary motion of the seismometer. (a) The seis-
mometer in its reference position with the pendulum in its rest posi-
tion. (b) Motion of the seismometer and pendulum in the special
case of a rotation of the frame by an angle α centered on the location
of the point mass of the equivalent simple pendulum. It turns out
that �φ � �α if the distance HR equals the length of the equivalent
simple pendulum.
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This is a prevalent way to discuss sensitivity to angular
acceleration.

Consider now the seismometer’s frame being rotated
about the initial location of S (center of mass) by an angle
α. If the seismic mass were a point mass with vanishing mo-
ment of inertia (JS � 0), the pendulum would easily follow
the motion of the frame such that it preserves the location of
its center of mass, thus preserving its linear momentum. No
deflection would be observable with respect to the frame.
However, if the moment of inertia is finite, the pendulum
shows the desire to preserve its angular momentum too. Be-
cause of its translational acceleration the hinge must exert
forces at H to accelerate the pendulum’s body. The pendu-
lum’s body will try to resist the change in angular momentum
by keeping its orientation in inertial space but will be slightly
deflected with respect to inertial space in order to preserve
linear momentum at the same time. The motion of the pen-
dulum will be such that the torques due to angular and linear
momentum with respect to an axis at H will cancel. �φ and
�α will not be equal in this case. If the frame is accelerated
counterclockwise, the pendulum will be deflected clockwise
with respect to the frame.

Now consider a rotation about a center R that is moved
farther away from H along the line from H to S. The pen-
dulum will still try to preserve its angular momentum by
keeping its orientation in space. Because of the conservation
of angular momentum only, a counterclockwise rotation of
the frame would deflect the pendulum clockwise with respect
to the frame. However, the linear motion of H to the left be-
comes larger the larger the distance HR is. The linear accel-
eration of the center of mass of a pendulum that preserves its
orientation in space would, hence, become larger too. The
torques on the pendulum due to angular and linear momen-
tum with respect to an axis at H will cancel only for a larger
�φ. The distance between H and location R for the axis of
rotation, where both effects cancel in the way that �φ � �α
and such that there is no resulting deflection with respect
to the frame (Fig. 4b), equals the length of the equivalent
simple pendulum. The seismometer is insensitive to rotations
centered on this axis. Because any motion can be geometri-
cally decomposed into a translational displacement of this
axis and a rotation centered on this axis, the seismometer
apparently senses only the translational part of motion.

Quantitative Solution

Geometry of the Problem

The geometry that I use for the derivation of the equation
of motion is defined in Figure 5. S is the location of the pen-
dulum’s center of mass, H is the location of the hinge of the
seismometer’s pendulum, and R is the reference point on the
seismometer’s frame. Their location vectors are s, h, and r,
respectively. They are defined in a coordinate system of in-
ertial space. R can be understood as the origin of a coordinate
system that moves and turns with the frame. f̂1 and f̂2 are

base vectors within this coordinate system and turn with
the frame. f̂1 is in the direction of the line connecting H
and R, while f̂2 is perpendicular to it. Similarly, H may
be understood as the origin of the pendulum’s coordinate
system with the base vectors being p̂∥ and p̂⊥, which turn
with the pendulum. p̂∥ is in the direction of the line connect-
ing H and S, while p̂⊥ is perpendicular to it. Vector compo-
nents parallel to p̂∥ and p̂⊥ control the sensitivity to different
kinds of acceleration as will be discussed in the following
section.

Only translational motions of R in the �x; y� plane and
rotations centered on an axis through R perpendicular to this
plane are considered. Only centripetal forces due to rotations
about an axis that is parallel to the �x; y� plane such that a⊥ is
finite can additionally contribute to the signal produced by
the seismometer as will be discussed in the next section.
Forces due to all other motions are entirely compensated
by the hinge and will not be observable. While the locations
S, H, and R may change with time t, the distances a � HR

a⊥ dα

ϕ

β

H

R

f̂1

p̂⊥

x

y

S
a

l

p̂
f̂2

a

Figure 5. The geometry of the seismometer is defined by the
locations of the center of mass of the pendulum’s body at S, the
hinge at H, and the reference point R on the frame. The response
of the seismometer’s pendulum to a translational displacement of R
and a rotation of the frame centered on R is discussed. With respect
to inertial space, φ defines the orientation of the pendulum and α
defines that of the seismometer’s frame. β � φ � α is the angle that
is observed by the transducer in the seismometer. Distances l � HS
and a � HR are constant and are displayed by thick lines. The unit
vector in direction of the line connectingH and R is f̂1, and f̂2 is the
unit vector perpendicular to it. They are base vectors of a coordinate
system that moves and turns with the frame. Similarly, p̂jj and p̂⊥
are unit vectors parallel and perpendicular to the line connecting H
and S. They are base vectors of a coordinate system that moves and
turns with the pendulum. Components ajj and a⊥ of the vector from
H to R in the pendulum’s coordinate system are displayed by dash-
dotted lines and are parallel and perpendicular to p̂jj, respectively.
Similarly, the component djj of the vector from R to S is parallel to
p̂jj and is displayed by white dots. Its component parallel to p̂⊥ is
d⊥ � a⊥.
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and l � HS remain constant. The hinge at H and the refer-
ence location at R are fixed to the seismometer’s frame. The
angle α�t� thus defines the orientation of the seismometer’s
frame with respect to the y direction in inertial space. Simi-
larly, the center of mass at S and the hinge at H are fixed to
the pendulum’s body. The angle φ�t� thus defines the orien-
tation of the seismometer’s pendulum with respect to inertial
space. The seismometer senses the deflection of the pendu-
lum with respect to the frame. This is expressed by the an-
gle β�t� � φ�t� � α�t�.

Equation of Motion

The Lagrangian for the pendulum is

L � 1

2
m�_s2x � _s2y� �

1

2
JS _φ2; (1)

where m is the total mass of the pendulum, JS is its moment
of inertia for angular acceleration centered on S, and a dot
means derivation with respect to time. With the components

sx�t� � rx�t� � a sinα�t� � l sinφ�t� (2)

and

sy�t� � ry�t� � a cosα�t� � l cosφ�t� (3)

of the vector s�t� � r�t� � af̂1�α�t�� � lp̂∥�φ�t��, the motion
of the center of mass is expressed by the motion of the ref-
erence location R and the rotation of the seismometer’s frame
centered on R as well as the rotation of the pendulum cen-
tered on the hinge at H. This results in

_s�t� � _r�t� � a _α�t�f̂2�α�t�� � l _φ�t�p̂⊥�φ�t�� (4)

and

�s�t� � �r�t� � a �α�t�f̂2�α�t�� � a _α2�t�f̂1�α�t��
� l �φ�t�p̂⊥�φ�t�� � l _φ2�t�p̂∥�φ�t��: (5)

With Lagrange’s equation

d
dt
∂L
∂ _φ � ∂L

∂φ � 0; (6)

the equation of motion is

ml��rp̂⊥ � a �αf̂2p̂⊥ � a _α2 f̂1p̂⊥� � �ml2 � JS� �φ � 0 (7)

after a few pages of calculus. For simplicity, the explicit de-
pendency on time and angles α and φ is dropped from
here on.

With

β � φ � α; (8)

f̂2p̂⊥ � cos β; (9)

and

f̂1p̂⊥ � � sin β; (10)

the equation of motion is expressed by the angle β that is
observed by the transducer of the seismometer as well as
r and α, which define the motion of the seismometer’s frame.
The resulting differential equation is

�ml2 � JS|����{z����}
�JH

� �β � �ml�rp̂⊥ �ml �α
�
a cos β|�{z�}

�a∥

�
�
l� JS

ml|�{z�}
�lesp

��

�ml _α2 a sin β|�{z�}
�a⊥

; (11)

where JH is the moment of inertia of the pendulum for an-
gular acceleration centered on the hinge at H and lesp is the
length of the equivalent simple pendulum. a∥ and a⊥ are
components of the vector

r � h � a∥p̂∥ � a⊥p̂⊥ (12)

from the hinge at H to the reference location R given in the
coordinate system of the pendulum. They are the compo-
nents parallel and perpendicular to the pendulum’s direction
p̂∥ from H to S and, therefore, depend on β.

Sensitivity of the Pendulum

The sensitivity of the pendulum to the different constitu-
ents of motion as derived from equation (11) becomes appar-
ent by

�β � � 1

l� JS
ml

�
�r⊥ � �α

�
l� JS

ml
� a∥

�
� _α2a⊥

�
: (13)

There, �r⊥ � �rp̂⊥ is the component of the translational accel-
eration of R perpendicular to the pendulum’s direction from
H to S (i.e., the acceleration in the sensitive direction p̂⊥ of
the seismometer).

Upon excitation of the pendulum, β will vary, and
hence, a∥ and a⊥ may vary too. Therefore, we must under-
stand equation (13) as defining the sensitivity of the pendu-
lum in its reference position. Alternatively, the pendulum can
be considered within a feedback loop that keeps variations of
β generally small and vanishing in the temporal average. In
this way equation (13) becomes a more general description
of the sensitivity. a∥ and a⊥ are then defined by the location
of R with respect to the seismometer’s frame only and, thus,
remain constant. Both are controlling the partitioning of the
different contributions to the seismometer’s sensitivity.

Translational Acceleration. The contribution to equa-
tion (13) due to �r⊥ is the sensitivity to translational accelera-
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tion. p̂⊥ defines the sensitive direction of the seismometer,
and the pendulum is entirely insensitive to the component
�r∥ � �rp̂∥ of translational acceleration. This is customarily
considered when discussing the properties of inertial seis-
mometers. In the absence of rotary components ( _α � 0

and �α � 0) all locations on the seismometer’s frame undergo
the same motion. Then it is not necessary to distinguish be-
tween possible reference points, and �r⊥ may be replaced by
�h⊥, for example.

If g is the vector of gravity acting on the pendulum’s
mass, �r⊥ may be replaced by �r⊥ � gp̂⊥ if gp̂⊥ is not com-
pensated by a suspension. Equation (13) then describes the
response to ground tilt also. For a horizontal seismometer on
leveled ground gp̂⊥ � 0.

Angular Acceleration. The second contribution is due to
angular acceleration �α. It obviously vanishes for

a∥ � lesp � l� JS
ml

: (14)

This is the case if a∥ equals the length of the equivalent sim-
ple pendulum lesp.

Centripetal Acceleration. The last contribution propor-
tional to _α2 is due to the centripetal acceleration. It vanishes
if the center of rotation (i.e., the reference location on the
frame) is in line with H and S, and thus,

a⊥ � 0: (15)

The motion of the seismometer was restricted to transla-
tions in the �x; y� plane and to rotations about an axis per-
pendicular to this plane. Rotations about an axis that is
parallel to the �x; y� plane will also cause centripetal accel-
eration as long as the distance vector between the axis of
rotation and the center of mass has a finite component par-
allel to p̂⊥ in the �x; y� plane. However, angular acceleration
centered on such an axis will have no contribution to equa-
tion (13), because the resulting forces are compensated by
the hinge.

In a Streckeisen STS-2 seismometer with its homoge-
neous triaxial configuration (Wielandt, 2002), a⊥ is finite
for rotations centered on the vertical axis of symmetry of
the instrument. This motion will exert the same centripetal
acceleration on each of the internal U, V, and W component
sensors. Their signals are added to form the vertical compo-
nent’s signal. Centripetal acceleration due to rotation about
the axis of symmetry, therefore, will produce an apparent
vertical acceleration in the output signal. In practice, this
can be neglected because a⊥ is too small to produce a sig-
nificant contribution to the total output signal in seismologi-
cal applications.

Scaling the Contribution of Rotations

Although α is independent of the selected reference lo-
cation, its contribution to the sensitivity as defined by equa-
tion (13) can be controlled by the choice of R because this
selection will define the factors a∥ and a⊥. At the same time
the amount of displacement of R depends on the selection of
R. This way the contributions to the output signal (which is
independent of R naturally) can be seemingly shifted from
translational to angular acceleration and vice versa. Choos-
ing the reference location on the seismometer’s frame ac-
cording to equations (14) and (15) will place the reference
at the location of the point mass of the equivalent simple pen-
dulum. In this case

�β � � 1

l� JS
ml

�r⊥ (16)

even in the presence of rotations and angular acceleration.
The pendulum appears entirely insensitive to the rotary com-
ponent of motion. Notice that �r⊥ may not be replaced by �h⊥
(i.e., translational acceleration of the hinge) in this case. We
can release the restriction to rotations about an axis perpen-
dicular to the �x; y� plane here. As long as the axis of rotation
passes through the point mass of the equivalent simple pen-
dulum, no centripetal acceleration will contribute to the ob-
servation, and equation (16) is still valid.

On the other hand, the sensitivity to angular acceleration
can be made arbitrarily large by a∥ → ∞, thus moving R to
infinity. In fact, all acceleration then will be expressed in
terms of angular acceleration.

Linear Suspension

To discuss the sensitivity of a pendulum with linear sus-
pension as if it is common in geophones, the deflection is
more appropriately expressed by the component

b⊥ � lβ (17)

of the displacement of the center of mass at S in the sensitive
direction of the pendulum with respect to the seismometer’s
frame. Further, the vector d from the reference location at R
to that location on the frame where the center of mass (S)
initially was located is used to express the sensitivity to rota-
tion. With the components

d∥ � dp̂∥ � l � a∥ (18)

(Fig. 5) and

d⊥ � dp̂⊥ � a⊥ (19)

of d and the deflection expressed by b⊥, the sensitivity
becomes

�b⊥ � � 1

1� JS
ml2

�
�r⊥ � �α

�
JS
ml

� d∥
�
� _α2d⊥

�
: (20)
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The case of a linear suspension is obtained by moving the
hinge H to infinity while preserving R. This is equivalent
to l → ∞ and provides the result

�b⊥ � ��r⊥ � �αd∥ � _α2d⊥; (21)

which is also obtained for a point mass with JS � 0. As is
expected the geophone is insensitive to rotations centered on
its center of mass (d∥ � 0 and d⊥ � 0). Referring the motion
to this location results in

�b⊥ � ��r⊥; (22)

which is customarily considered when discussing
geophones.

More Than One Sensor in a Frame

The ambiguity regarding the decomposition of the
seismometer’s output signal into two translational compo-
nents and one rotary component results from the observation
of a motion with three degrees of freedom using a sensor that
has only one degree of freedom. In the case of translational
displacements in the �x; y� plane together with a rotation
about an axis perpendicular to that plane, three appropriately
aligned pendulums will allow a unique decomposition of the
output signals into translational and rotary contributions.
However, the deduction of the translational displacement
in the presence of rotations still suffers from the nonunique-
ness due to the freely selectable reference location for the
kinematic description of the motion.

The pendulums must be aligned such that the locations
of the point masses of the equivalent simple pendulums do
not coincide. The pendulums will most appropriately be ar-
ranged star-like with angles of 120° between them. The dis-
tance to the center of the arrangement should be as large as
possible, while all three must be attached to the same rigid
frame (i.e., the seismometer’s housing or the pier on which
instruments are deployed). Choosing the point of symmetry
in the center of the arrangement as the reference location R
for all three pendulums will make the centripetal contribution
to their output signal vanish due to a⊥ � 0.

Considering a general motion in space with six degrees
of freedom, three seismic components are not sufficient for a
unique decomposition. With conventional seismometers it is,
therefore, impossible to distinguish translational and angular
acceleration. Six appropriately aligned sensors are required
in this case. However, this can be difficult or even impossible
in practice. Using six conventional seismic sensors, the ro-
tary contribution is derived from differences between com-
ponents. Gain errors will be amplified in the differences and
can make the result useless or even alter its sign. Conse-
quently, Nigbor (1994) recommends the use of a combina-
tion of three sensors for linear acceleration and three sensors
for angular acceleration rather than six linear sensors. Sur-
yanto et al. (2006), however, have demonstrated that this

concept is applicable to the rigid motion of an extended array
of seismometers with significantly larger baselines between
individual sensors. Graizer (2009a) also studied the potential
of a set of pendulum sensors to observe rotary components
of motion.

A Seismological Sensor for Angular Acceleration

In the optimal sensor for angular accelerations, the
hinge is placed at the center of mass (H � S). Then, from
equation (13)

�β � � �α (23)

with l → 0 (see also Peters, 2009). Because the hinge is sup-
posed to exert no torque, the pendulum will maintain its orig-
inal orientation in inertial space while rigidly following any
translational motion of the frame. Readings of the angle be-
tween the pendulum and the frame directly provide a mea-
sure of rotary motion. The sensitivity is independent of the
reference location. However, imperfections of the real sensor
can displace S from H and will make l finite and, therefore,
produce a sensitivity to translational motion.

A sensor of this kind can be constructed with precisely
balanced masses on one pendulum. In practice it is difficult
to build a mechanical system of this high degree of symmetry
(Graizer, 2009a). Alternatively, the sensor can be designed as
a circular tube as in the R–1 (eentec, 2008), which uses an
electrolyte-filled toroid. The tube has to be filled completely
with an incompressible fluid of high density and low viscos-
ity. The fluid is constrained by the walls of the tube and rig-
idly follows all motions except rotations centered on the axis
of symmetry. This sensor will be entirely insensitive to trans-
lational motion and to tilt-induced gravity as well. However,
in a rotating reference frame (as on the Earth’s surface) the
sensor will be sensitive to translational motion and tilt that
change its angular momentum with respect to its axis of sym-
metry. In seismological applications these contributions are
small compared to high-frequency angular acceleration cen-
tered on a local axis. Wassermann et al. (2009) and Nigbor
et al. (2009) recently tested the performance of the R–1.

An advantage of the fluid design is that the sensitivity
could be increased comparatively easily. For an observa-
tory installation the circular tube could be enlarged to a
few meters diameter. As in the fluid tiltmeter that is operated
at the Black Forest Observatory (Horsfall and King, 1978;
Emter et al., 1989), a membrane in the tube could be used
as a transducer. The membrane would constrain the fluid to
follow the rotations of the sensor too, while sensing the force
that is needed to accelerate the fluid. This force is propor-
tional to �αJS=ρ, where ρ is the radius of the toroid and
the moment of inertia JS increases with the radius of the
circular tube to the power of three. Thus, increasing the di-
mension of the sensor from 10 cm to 10 m would potentially
increase the sensitivity by a factor of 10,000. This could
be done in an observatory installation. These simple consid-
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erations certainly ignore possible difficulties of a technical
realization.

Conclusions

Any motion of a rigid seismometer’s frame can be ex-
pressed geometrically by a translational displacement of a
reference point on the frame and a rotation centered on this
point. This reference point can be arbitrarily chosen while
describing the same motion with a different amount of lin-
ear displacement. Because a single pendulum seismometer
senses only one degree of freedom, the translational and ro-
tary constituents of the motion cannot be inferred uniquely
from the output signal. In consequence, the sensitivity to ro-
tation and the amount of translation depend on the chosen
reference location, while the sensitivity to translation and
the amount of rotation as well as the seismometer’s output
signal are independent of this choice. Using the freedom to
purposefully select a reference point, the contribution of ro-
tary motion to the output signal can be shifted to the contri-
bution by translational motion, and vice versa. In particular,
the pendulum can apparently be made insensitive to angular
acceleration in general. In fact, a pendulum seismometer will
produce no output signal due to rotations about the location
of the point mass of the equivalent simple pendulum. The
definition of a universally valid sensitivity to angular accel-
eration is impossible as well as the definition of a sensitivity
to linear acceleration in the presence of rotations. A defini-
tion of sensitivity always requires a preceding definition of a
reference location for the kinematic description of motion. It
is most appropriate to refer motions of pendulum seismom-
eters to the location of the point mass of the equivalent sim-
ple pendulum, because the sensor then appears sensitive to
linear acceleration only.

A complete seismometer, in general, would need six ap-
propriately aligned sensors in one rigid frame to distinguish
all degrees of freedom of linear and angular acceleration. The
freedom to select an arbitrary reference location for the kine-
matic description is a remaining nonuniqueness when infer-
ring translational displacement in the presence of rotations.
Only the deduction of rotation from a six-component sensor
is unique without the definition of a reference location.

The sensitivity to translational acceleration can be con-
trolled by the design of the sensor such that it vanishes. This
happens for lesp → ∞, which is the case if JS dominates (i.e.,
l � 0, which is not the case in conventional seismometers).
In this way, by placing the center of mass of the pendulum
and the hinge at the same location, a sensor for angular ac-
celeration could be constructed that is entirely insensitive to
translational acceleration and gravity induced by ground tilt.
Angular acceleration can be derived from this sensor’s output
signal uniquely without the definition of a reference location.
Theoretically, such a sensor has the potential to provide ob-
servations of the angle of ground tilt that is required to re-
move tilt effects from long-period seismic observations.
However, the twofold integration that is necessary to obtain

the angle from angular acceleration strongly increases long-
period noise. A result for translational displacement even re-
quires a fourfold integration of the angular acceleration time
series (Bradner and Reichle, 1973). This and the difficulty of
precisely balancing the mass in practice such that the center
of mass and the hinge are at the same spot (Graizer, 2009a)
renders the success of this approach questionable. By con-
trast, laser gyroscopes observe angular velocity. The angle
can be obtained from their output by a single integration.
For this reason they can be superior in this context.

Usually, the possible contributions due to rotations (not
tilt-induced gravity) are ignored in interpretations of seismic
signals. The magnitude of the resulting error can be esti-
mated. Because the output signal is the same for all reference
locations, we may chose the location of the point mass of the
equivalent simple pendulum as reference without loss of gen-
erality. Ignoring rotary motions then means ignoring the
change in sensitive direction p̂⊥ due to the rotation. Transla-
tional acceleration derived from the seismometer’s output
will be attributed to one direction in inertial space. Changing
its orientation by Δα, the sensor will observe only cosΔα
of the component that is expected to be observed, while
sinΔα of the component to which the instrument is expected
to be insensitive contributes to the output signal. The rela-
tive error with respect to translational acceleration in this di-
rection is

Δ �r⊥
�r⊥

� cosΔα � 1 � �r∥
�r⊥

sinΔα: (24)

For a plane Love wave of wavelength λ and amplitude u of
horizontal displacement,

Δα≈ π
u

λ
≪ 1: (25)

This immediately results from the expressions provided by
Widmer-Schnidrig and Zürn (2009) for SH-type waves. The
effect of rotary motion can, therefore, be safely ignored in
seismological applications except for tilt-induced gravity.

The considerations discussed in this article show that a
pendulum seismometer must be understood as sensitive to
linear acceleration only in seismological applications. The
observation of angular acceleration with appropriately de-
signed sensors can, however, be interesting in the context
of strong-motion observations in the near field or the obser-
vation of motions that structures undergo due to seismic
shaking where it can become comparatively large.

Data and Resources

No data were used in this study. Figures were prepared
with Xfig. The manuscript was typeset with LaTeX2ε. The
list of references was assembled with bibTeX.
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