
Tutorial on Rotations in the Theories of Finite Deformation

and Micropolar (Cosserat) Elasticity

by J. Pujol

Abstract Although earthquake source studies have had a great impact on tectonics
studies, there are at least two important problems for which seismology seems unable
to provide answers. One of them refers to the rotation about vertical axes of crustal
blocks in continental areas of diffuse deformation. The other problem is the stress
rotations observed after large earthquakes. In both cases there are a number of com-
peting explanations but none is supported by hard evidence. These problems are un-
likely to be solved by conventional seismology, but the situation may be different
if rotation data are acquired. In the near field of large earthquakes the linearized the-
ory may not apply or a different theory may be needed. In this tutorial we consider
rotations from two different points of view: the classical nonlinear theory and a
nonclassical linear theory. In the nonlinear theory the deformation tensor can be ex-
pressed as the product of two tensors, one corresponding to a rotation and the other to
strain, applied sequentially. In contrast, in the linearized theory the deformation tensor
is the sum of a rotation and a strain tensor and the order of their application is im-
material. A linear theory that includes rotations not considered by classical elasticity
(linear or not) is the micropolar theory, which deals with materials with microstruc-
ture. This theory assigns to each point in space six degrees of freedom, three corre-
sponding to position and three corresponding to rotations. The specification of a linear
micropolar isotropic body requires six elastic moduli, two of which are the classical
Lame’s parameters. Wave propagation in a micropolar medium is more complicated
than in a linear elastic medium, with two coupled wave equations. The micropolar
theory has been successful with media having periodic inner structures, but there
is very little experimental work on solids with more complicated structure.

Introduction

Although seismology is an extremely successful sci-
ence, most of its success comes from the analysis of far-field
data or from the near field of small earthquakes. However,
the nature of the near field of large earthquakes and the
details of the earthquake rupture itself constitute some of
the still unsolved great questions of seismology. As is well
known, seismic source information is also extremely impor-
tant in tectonics studies, (e.g., Jackson, 2002a), but what may
not be as well known is that there are some fundamental tec-
tonic problems still awaiting answers and that seismology
seems unable to provide them. One of the tectonically impor-
tant extant problems is the rotation about vertical axes of
crustal blocks in continental areas of diffuse deformation.
For example, the Western Transverse Ranges (WTR) in
southern California have undergone a clockwise rotation of
about 90° since the Miocene (Kamerling and Luyendyk,
1979). The WTR is a large block (about 150 × 80 km) and
the areas to the north and south of it appear unrotated. Sev-
eral geometrical models have been proposed to explain the

kinematics of the rotation, but according to Onderdonk
(2005) all of them have the problem that there are overlaps
and holes at the rotation boundaries and that there is no evi-
dence that these space problems are accommodated by inter-
nal deformation, as postulated. Another relevant question
regarding these rotations is the nature of the forces that drive
them. In general, there are two possible models, depending
on whether the motion is driven by forces applied to either
the bases or the sides or the blocks. In the first case the
strength of the lithosphere resides in the mantle, and in the
second case the strength resides in the upper crust. This ques-
tion itself is a matter of current debate. A popular model
likens the lithosphere to a jelly sandwich, with a strong upper
crust, a weak lower crust, and a strong uppermost mantle
(Brace and Kohlstedt, 1980). More recently, a radically dif-
ferent model with a strong seismogenic upper crust and a
weak mantle has been introduced by Jackson (2002b).
The general validity of this new model has already been criti-
cized (Burov and Watts, 2006), while Afonso and Ranalli
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(2004) concluded that neither model has general applicabil-
ity and that the strength of the continental lithosphere varies
laterally across the earth and depends on composition and
tectonothermal history. Although it was expected that the in-
vestigation of block rotations would help settle this matter, it
seems that it does not give conclusive answers to the ques-
tions of the driving force and the strength of the lithosphere
(Jackson, 2002c). However, a recent analysis of the rota-
tion of the WTR seems to favor the side forces (Onder-
donk, 2007).

The question of block rotation is further complicated by
the fact that it occurs within a stronger deformation field
acting over a region much larger than the blocks. This re-
gional field originates in the flow of the lower lithosphere
and is usually described in terms of a velocity field. This field
exerts ultimate control on the motions of the blocks, but be-
cause it changes with time, there is a conflict between the
faults that bound the rotating blocks and the time-varying
velocity field. The reason is that there is a very limited range
of fault orientations that can be active for a given value of the
velocity field (Holt and Haines, 1993). As a consequence, the
faults that bound the blocks at a given time will eventually
become inactive because they will become misoriented with
respect to the regional stresses (assuming that the blocks are
rigid). Eventually, those faults will be replaced by others with
more favorable orientations, but before that happens the ex-
isting faults may adapt to the deformation field, perhaps by
changing their rakes (Jackson, 2002c, 2004). For exam-
ple, Jackson and McKenzie (1999) show pictures of slightly
curved striations exposed on an active normal fault in
Greece. This unusual exposure is about 50 m long in the di-
rection of slip, and the observed curvature, about 1° from top
to bottom, is compatible with a change in the slip vector as a
result of a block rotation about a vertical axis over a number
of earthquake cycles. These authors noted, however, that
their interpretation raises some questions and difficulties.
For example, it is not clear how the slip vector can change
direction without deforming the corrugations over the whole
fault surface. The relation between block and fault rotations
was also made by Nur and Ron (2003), who framed the prob-
lem in a frictional context.

It is also worth noting that in addition to block rotations
about vertical axes, rotations about horizontal axes are also
possible. These types of rotations are usually associated with
normal faulting in areas of continental extension (Jackson
and White, 1989). For example, Cannon et al. (2001) inves-
tigated fault and geodetic data associated with the 1975
M 7:2 Kilauea volcano (Hawaii) normal-fault earthquake
and concluded that the observations could not be explained
unless horizontal rotation of the hanging-wall blocks was
included. Another example of inferred block rotation is pro-
vided by the 1992 Mw 7:3 Landers, California, strike-slip
earthquake (Peltzer et al., 1994). In this case the horizontal
rotation of an ≈3 × 5 km crustal block was needed to ex-
plain certain patterns in synthetic aperture radar images.

Rotations are also important in seismology because of
the stress rotations that have been determined after the occur-
rence of relatively large earthquakes, such as the 1983ML 6:4
Coalinga (Michael, 1987; Hardebeck and Michael, 2006),
the 1992 Mw 7:3 Landers (Hauksson, 1994), and the 1994
Mw 6:7 Northridge (Zhao et al., 1997) earthquakes in Cali-
fornia and the 2002 Mw 7:9 Denali (Alaska, Ratchkovski,
2003) and 1999 Mw 7:4 Izmit (Turkey, Bohnhoff et al.,
2006) earthquakes. Although questions have been raised as
towhether some of the rotations are real or processing artifacts
(Townend and Zoback, 2001; Hardebeck and Michael, 2006;
Townend, 2006), there seems to be a consensus that large
earthquakes produce stress rotations. What is not clear, how-
ever, is what causes them. For example, Michael (1987) and
Zhao et al. (1997) suggested the possibility of inelastic pro-
cesses in the rupture zone, while Hauksson (1994) explained
his results in terms of stress refraction on a weak fault zone.
More recently, Smith and Dieterich (2007) found that a het-
erogeneous 3D fractal distribution of crustal stresses creates
an apparent stress rotation after the occurrence of a major
earthquake.

The questions and problems described previously have
been around for a long time, and observational seismology,
as practiced today, has not been able to provide the informa-
tion required to answer and solve them. It may well be that
what is needed is to collect new types of information, such as
rotational motions in the near field of large earthquakes. For
example, if the rotation of a block about an axis occurs as
part of the earthquake process, it would be very helpful if
the rotation could be detected by seismological means. Re-
garding stress rotations, the results of Smith and Dieterich
(2007) are significant, but the question here is whether there
is any objective way to assess the validity of their model.
Again, it would be desirable to have observational evidence
to help constrain the solution of what appears to be an ill-
posed problem, and the investigation of near-field rotations
may provide valuable new insights. As the work of Suryanto
et al. (2006) and Igel et al. (2007) have shown, the rotations
measured in the far field are consistent with those determined
using conventional seismic data, which may mean that truly
new rotational information may be available only in the near
field. In addition, theories that go beyond the standard lin-
earized theory used today may be needed. For example,
the assumption of small strains in the source area may be
too restrictive and may have to be relaxed. In fact, Nigbor
(1994) recorded the rotations generated by a large chemical
explosion and concluded that near-field terms and large
strains are likely responsible for much of the observed
ground rotation. As shown subsequently, finite deformations
can be represented by the consecutive application of two ten-
sors, one of which rotates the principal directions of strain. In
contrast, in the infinitesimal theory the two tensors are added
together, which simplifies the mathematics involved. On the
other hand, the classical theory of elasticity, linear or not, is
based on the assumption that the interaction between the par-
ticles in a medium takes effect via contact forces only, that is,
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couples are not considered. This restriction was removed by
a theory introduced by the Cosserat brothers in 1909, which
allowed the rotation of the particles of the medium. This
theory has expanded greatly, although its application to seis-
mic and tectonic problems has been very limited (see subse-
quently). For completeness, we also note that the classical
linear seismic theory also allows the presence of rotations
when faulting takes place on a finite-thickness fault and there
is a zone of strength weakening near the advancing crack tip
(Knopoff and Chen, 2009).

In this article we will go over the basic mathematical
aspects of the finite strain and Cosserat elasticity theories
and will discuss a number of basic properties of rotations.
Familiarity with the basic concepts of classical continuum
mechanics, tensor calculus, and indicial notation is assumed.
Introductory references are, for example, Atkin and Fox
(1980), Mase (1970), and Pujol (2003).

Rotations and Orthogonal Second-Order Tensors

This section is based on Chadwick (1999) and Ogden
(1997) for the finite rotations and on Pujol (2003) for the
infinitesimal ones. The major results are proved in the Ap-
pendix. As we will see in the next section, finite deforma-
tions can be expressed in terms of two tensors, one of which
is related to finite rotations. Here we will derive an expres-
sion for that tensor by consideration of the following prob-
lem: if r0 is a vector obtained by rotation of a vector r, find the
second-order tensor Q such that r0 � Qr. Rotations are de-
fined by two elements, an axis and an angle. The axis, in turn,
can be defined by a unit vector. Let a and ϕ be these two
elements and let r be an arbitrary vector. Then a rotation
of angle ϕ of r about a results in the vector

r0 � Qr � cosϕr� �1 � cosϕ��r · a�a� sinϕa × r: (1)

Using this result we get the following explicit expres-
sion for Q:

Q � aa� �bb� cc� cosϕ � �bc � cb� sinϕ; (2)

where the juxtaposed vectors constitute dyads. The geometry
of the problem and the vectors involved are shown in Fig-
ure 1. As can be seen from equation (1), a is an eigenvector
of Q with an eigenvalue equal to one. Two other eigenvalues
are exp��iϕ�, which means that a is the only real-valued ei-
genvector. For this reason, in equation (2) the only constraint
on b and c is that they, together with a, form an orthonormal
set. When Q is applied to an arbitrary vector r, there are two
possibilities depending on whether b and c have been fixed
or not. In the first case we get the following alternative ex-
pression for Qr:

Qr � raa� �rb cosϕ � rc sinϕ�b
� �rb sinϕ� rc cosϕ�c; (3)

where

ra � a · r; rb � b · r; rc � c · r; (4)

and a dot indicates the scalar (or dot) product. In the second
case b can be chosen as shown in Figure 1, and equation (1)
is recovered.

The tensor Q also has the property that

QTQ � QQT � I; (5)

where the superscript T indicates transposition and I repre-
sents the identity tensor (see the Appendix). Tensors that
satisfy equation (5) are known as orthogonal, by analogy
with a similar definition for matrices. All the tensors intro-
duced in this article are of the second order, and because they
admit matrix representations, expressions such as Qr and
QQT can be interpreted in terms of products involving ma-
trices and vectors (see the Appendix).

Immediate consequences of equation (5) are

jQuj � juj; �Qu1� · �Qu2� � u1 · u2; (6)

where the vertical bars indicate vector length and the vectors
involved are arbitrary. Therefore, rotations preserve vector
length and the angle between two vectors, as expected.

It is interesting to note that equation (1) allows writing
the components of Q in terms of only ϕ and the components
of a, namely,

Qij � �cosϕ�δij � �1 � cosϕ�aiaj � �sinϕ�ϵijkak (7)

Figure 1. Geometry for the derivation of equation (1). The
vector r0 is obtained by rotation of angle ϕ of r about a. The vectors
a, b, and c constitute an orthonormal set.
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(Jansen and Boon, 1967). However, this equation cannot be
converted into a coordinate-free expression involving only ϕ
and a. On the other hand, equation (7) can be derived from
equation (2) (see the Appendix).

The preceding equations correspond to finite rotations.
When ϕ ≪ 1 the rotation is infinitesimal. In this case,
cosϕ≈ 1 and sinϕ≈ ϕ, and equation (1) becomes

r0 � Qr � r� ϕa × r (8)

within the approximations involved. This result can be de-
rived by direct consideration of infinitesimal rotations. Now
let P be the tensor corresponding to an infinitesimal rotation
of angle θ about a vector t and consider the effect of P onQr.
After letting d � a × r and using equation (8) we get

PQr � Pr�ϕPd � r� θt × r� ϕd� θϕt × d

� r� θt × r� ϕa × r � QPr; (9)

where the term containing θϕ has been neglected. This result
shows that infinitesimal rotations are additive. Thus, they
commute. In general, these properties do not apply to finite
rotations.

In general, the components of Q corresponding to an
infinitesimal rotation are of the form

Qij � δij � αij; jαijj ≪ 1; (10)

where αij is an antisymmetric tensor (i.e., αij � �αji).
This antisymmetry follows from equation (5). In addition,
every antisymmetric tensor has an associated vector (see the
Appendix), which in the case of αij is the vector ϕa in
equation (8).

Using equation (7) with ϕ ≪ 1 we get the following
expression

Qij � δij � ϕϵijkak: (11)

Comparison with equation (10) shows that αij is equal to
minus the second term on the right.

Infinitesimal rotations allow the introduction of the con-
cept of angular velocity in a simple way (i.e., Synge, 1960).
Let r be a function of time representing the position of a par-
ticle and let dr � r0 � r. To indicate the infinitesimal nature
of ϕ it will be replaced by dϕ. The velocity v of the particle is
defined by

v � dr
dt

� dϕ
dt

a × r � ω × r; ω≡ dϕ
dt

a; (12)

where equation (8) was used and ω is the angular veloc-
ity vector.

Finally, recall that the result of the vector product of two
vectors a and b is a pseudovector, say c, whose direction is
such that the triad a, b, and c has the handedness of the co-
ordinate system (i.e., it is right- or left-handed). Changing the
handedness changes the direction of c. This is what makes c

a pseudovector (also known as axial vector), rather than a
vector. When the handedness is fixed, c can be treated as
a regular vector, but the distinction cannot be always ignored.
For example, vectors cannot be equated to pseudovectors be-
cause they behave differently under reflections of coordinate
axes (e.g., Byron and Fuller, 1992). An example of reflec-
tion is provided by a transformation whose matrix has diag-
onal elements equal to 1, 1, �1 and all the other elements
are equal to zero. The constitutive equation for micropolar
solids, discussed subsequently, provides an example of how
to handle pseudovectors.

Finite Deformations

Classical continuum mechanics studies the deformation
and motion of bodies ignoring the discrete nature of matter.
Let V and V and S and S indicate the volume and surface
of a body before and after deformation, respectively. The de-
formation will be assumed to be a function of time, t, and V
and S will indicate a reference state. As a consequence of
the deformation, a volume ΔV within V will become Δv
within V. Let X � �X1; X2; X3� indicate the vector position
of a particle in ΔV and x � �x1; x2; x3� indicate the vector
position inΔv corresponding to the particle that was initially
at X. Vector X labels the particles of the body while x
describes the motion of the particles. We can write

x � x�X; t�; X � X�x; t�; (13)

whereX�x; t� can be considered the inverse motion. This pair
of equations can be viewed as a transformation of coordi-
nates and requires the assumption that its Jacobian does not
vanish. Deformation can be described using the Lagrang-
ian (or material) and Eulerian (or spatial) point of views.
In the first case X is the independent variable and in the sec-
ond case it is x. With few exceptions, capital and small letters
will be used to represent properties in the reference and de-
formed states, respectively.

Most of the following results are taken from, or based
on, Ogden (1997). Let us take the differential of x. From
equations (13) we get

dxi �
∂xi
∂XJ

dXJ: (14)

The tensor form of this equation is

dx � AdX; (15)

where A is the deformation gradient, which is a tensor. The
components of A are Ai;J � xi;J. Now we will investigate
two geometric aspects of the deformation. First we will con-
sider the ratio of the lengths of dx and dX, denoted ds and
dS, respectively. Let t be the unit vector along dX. Then we
can write

dX � tdS; dx � AtdS: (16)

The ratio of lengths
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λ�t�≡ ds

dS
� jAtj � ��At� · �At��1=2 � �t · �ATAt��1=2

(17)

is known as the stretch in the direction t. For the last equality,
see equation (A29).

Now consider two line elements dX1 and dX2 and the
corresponding dx1 and dx2. Let θ and θ� γ be the angles
between these two pairs of vectors. Forming the scalar prod-
ucts dX1 · dX2 and dx1 · dx2 and using equations (16) and
(17) with appropriate subindices we get

cos θ � t1 · t2; cos�θ� γ� � t1 · �ATAt2�
λ�t1�λ�t2�

: (18)

These two equations allow the computation of γ, which is the
change in angle caused by the deformation.

A different view of the deformation can be obtainedwhen
A is written in terms of its polar decomposition, given by

A � RU � VR; (19)

whereR corresponds to a finite rotation (as defined in the pre-
vious section) and U and V are second-order positive definite
symmetric tensors (see the Appendix) satisfying

ATA � UTU � U2; AAT � VTV � V2: (20)

The tensors U and V are known as the right and left stretch
tensors. If R � I, A � U � V and the deformation is known
as pure strain. IfU � V � I, the deformation corresponds to a
rigid rotation. In, this case, fromequations (17) and (18)we see
that the lengths of the line elements and the angle between any
two directions remain unchanged (as expected). Thus, the de-
formation generates zero strain.

Let us investigate the relation between the right stretch
tensor and the stretch defined by equation (17). Introducing
the first of equations (20) into equation (17) gives

λ�t� � �t · �U2t��1=2 � jUtj: (21)

Now let ui and λi indicate one of the eigenvectors of U and
the corresponding eigenvalue. Also let juij � 1. Further-
more, because U is positive definite, its eigenvalues are
all positive. Then, replacing t in equation (21) by ui and
using jUuij � λi gives λ�ui� � λi. For this reason, the
λi (i � 1; 2; 3) are known as the principal stretches.

To establish the properties of the left stretch tensor, we
will consider

VRui � RUui � λiRui; (22)

where equation (19) was used. This result shows that V and
U have the same eigenvalues λi and that the eigenvectors of
V, equal to Rui, are obtained by the rotation of those of U.

Two additional important results are as follows. First,
ATA andU have the same eigenvectors. This can be seen from

ATAui � U2ui � UUui � λiUui � λ2i ui: (23)

Second, the eigenvectors ui, which constitute an ortho-
normal basis, remain orthogonal after the deformation. To
see that, use the second of equations (18) with t1 � ui and
t2 � uj, the first of equations (20), and λ�ui� � λi. Then
comparison with the first of equations (18) gives γ � 0.
Therefore, the eigenvectors remain orthogonal, although they
are rotated.

Now let us consider the sphere defined by jdxj2 � c2,
where c is a constant, in the deformed space centered at
x. In the undeformed state this corresponds to the reciprocal
Lagrangian strain ellipsoid

dX · �ATAdX� � jdxj2 � c2 (24)

with the principal axes given by the ui. These axes are called
the principal axes of strain (Love, 1944).

In view of the preceding results, the polar decomposition
A � RU can be interpreted as follows. First apply U to the
principal axes of strain, which results in a stretching of the
axes according to Uui � λiui. Then, apply R, which rotates
the stretched axes, so that Aui � λiRui. As shown pre-
viously, the three axes remain orthogonal after the deforma-
tion but not during its intermediate stages.

Finally, let us consider the displacement vector u,
defined as

u�X; t� � x � X: (25)

Solving for x and applying the gradient operation to the re-
sulting equation we get

A � I� D; (26)

where D is the displacement gradient, which is a tensor with
components DIJ � ∂uI=∂XJ � uI;J.

Now we will compare finite and infinitesimal deforma-
tions, the latter defined by the condition that U and R are
close to the identity tensor. Thus we will write

U � I� δU; R � I� δR; (27)

with the components of δU and δR much smaller than one
in absolute value. The tensor δR is antisymmetric (see equa-
tion 10), while δU must be symmetric because U is also.
Now introducing equations (27) into equation (19) and ne-
glecting second-order terms gives

A � �I� δR��I� δU� � I� δU� δR: (28)

Comparison of this result with equation (26) shows that

D � δU� δR: (29)
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This decomposition of D is unique (see the Appendix) and
using it we can write

δU � 1

2
�D� DT�; δR � 1

2
�D � DT�; (30)

which are the results of the infinitesimal theory of elasticity,
with δU and δR the strain and rotation tensors, respectively.
Note the significant difference between the effects of finite
and infinitesimal deformations on dX (see equation 15). In
the first case, U and R are applied sequentially, U first and
then R; the order of application cannot be reversed. In the
second case, equation (28) shows that the strain and rotation
effects are added together, which means that the order of
application is immaterial. Clearly, the distinction between
U and V disappears. In addition, in the infinitesimal case we
can proceed further by introducing equation (28) into equa-
tion (15) and rearranging slightly, which gives

dx � δUdX� �I� δR�dX: (31)

This equation shows that the deformation of dx has two
contributions, one of which is the infinitesimal rotation due
to the tensor I� δR. The corresponding rotation axis is de-
fined by the vector associated with δR, which is equal to
�1=2�∇ × u, while the rotation angle is equal to the absolute
value of this vector (Pujol, 2003). Note that these results can-
not be derived by consideration of δR independently of the
combination I� δR.

Micropolar (Cosserat) Elasticity

In general, a system of forces acting on a rigid body is
statically equivalent to a single force acting at an arbitrary
point and a couple (e.g., Arya, 1990). This idea is used in
continuum mechanics to introduce the stress vector, which is
done by consideration of the forces across a surface element
within a body. In this case, however, only the single force is
considered (e.g., Love, 1944; Pujol, 2003). The contribution
of the couple is neglected because the surface is allowed to
go to zero, so that the arm of the couple, and thus its mag-
nitude, go to zero (under the assumption that the forces in-
volved in the couple remain bounded). The same argument
is used to preclude the presence of body couples (Eringen,
1967, 1968). Although classical elasticity has been extraor-
dinarily successful, alternative formulations have been pre-
sented. For example, Poisson in 1842 regarded the molecules
in a crystal as small rigid bodies capable of rotation, an idea
that was further elaborated by Voigt in 1877 (Love, 1944,
p. 620). Rotations were treated systematically by the brothers
E. and F. Cosserat (1909), who let each point have six de-
grees of freedom, three corresponding to position, as in the
classical theory, and three corresponding to rotation. The lat-
ter was allowed by introducing a rigid trirectangular trihedral

(“trièdre trirectangle”), or orthogonal triad, at each point of
the medium, and a consequence was the introduction of cou-
ple stresses. Bodies that allow them are known as polar. The
work of the Cosserats turned out to be extremely important,
although it went almost unnoticed for about 50 yr. For an
overview and relevant references see, for example, Cowin
(1970), Toupin (1964), and Truesdell and Noll (1965). The
latter authors use the name directors to refer to the unit vec-
tors of the triad (see also Ericksen and Truesdell, 1958). In
the early 1960s several polar theories where introduced, but
the one that seems to have gained the most popularity is the
linear micropolar theory of Eringen (1966), which is a spe-
cial case of the more general micromorphic theory developed
by Eringen and Suhubi (1964). The micropolar theory cor-
responds to, and extends, the Cosserats’ theory.

The basics of the micropolar theory will be introduced
here. This presentation follows closely a comprehensive re-
view article by Eringen (1968), including the naming of his
sections (here subsections). As in the previous section, the
basic principles of continuum mechanics are assumed to be
known; only the new features are given special attention. The
reader is referred to the original article for the derivations of
the results that are only quoted. Eringen (1999) introduced
some modifications to the early formulation of the theory,
some of which will be noted subsequently. The basic results,
however, remain unchanged.

The micropolar theory of elasticity extends the classical
continuum theory to bodies with microstructure. This in-
cludes, for example, crystalline solids, granular solids, and
composite materials. The theory is already over 40 yr old,
and there has been ample time to test it. As summarized by
Eringen (1999), for bodies with periodic structures, such as
crystals, and man-made structures, such as tall buildings, the
theory has been successful. Unfortunately, for materials with
arbitrary microstructure, such as earth materials, very little
work has been done. As will be seen subsequently, the char-
acterization of a micropolar medium requires six elastic coef-
ficients whose experimental determination is very difficult
(e.g., Lakes, 1995; Eringen, 1999). In fact, few experiments
have been carried out (e.g., Gauthier, 1982; Lakes, 1982,
1986), and as far as the author is aware, earth materials have
not been investigated. One of the main obstacles is the fact
that micropolar effects can be observed only at short wave-
lengths and high frequencies and that they must have order
of magnitudes similar to those of the characteristic length
and time of the micropolar body (Eringen, 1999). Therefore,
finding out whether micropolar rotations are relevant in
earthquake seismology will require considerable effort, both
experimental and theoretical. Regarding the latter, Ieşan
(1981) and Teisseyre (1973) applied the micropolar and mi-
cromorphic theories to earthquake problems. The micropolar
theory has also been applied to tectonic problems by Twiss
and coworkers (e.g., Twiss et al., 1991, 1993; Lewis et al.,
2007; Twiss, 2009).
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Deformation and Microdeformation

The elasticity theories that allow couple stresses assume
the existence of an elastic continuum medium consisting of
deformable points or point particles (Eringen and Suhubi,
1964;Toupin, 1964;Eringen, 1999).Clearly, this concept can-
not be accommodated within classical continuum mechanics,
and to handle it Eringen and Suhubi (1964) introducedmacro-
volume elements (corresponding to the deformable points)
composed of microvolume elements.

Let us assume that a macrovolume ΔV contains N mi-
croelements ΔV�α�, α � 1; 2;…; N, each with density ρ�α�.
Let the position of the αth microelement be measured with
respect to the center of mass P of the macrovolume ΔV. Let
X indicate the position of P. Then, as Figure 2a shows, the
position of ΔV�α�, represented by the point Q, is given by

X�α� � X� Ξ�α�: (32)

After the deformation ΔV becomes a new volume Δv, the
center of mass moves to a point p with position vector x,
and X�α� moves to x�α�, given by

x�α� � x�X; t� � ξ�α��X;Ξ�α�; t�: (33)

To proceed further it is necessary to relate ξ�α� to Ξ�α�.
The following linear expression is physically justifiable for
small ΔV

ξ�α� � χK�X; t�Ξ�α�
K ; ξ�α�k � χkK�X; t�Ξ�α�

K ; (34)

where χK (K � 1, 2, 3) are three vector functions that rep-
resent the microdeformation and the sum convention over
repeated indices was used. The right-hand equation is the

component form of the left-hand equation. Introducing this
expression into equation (33) gives

x�α� � x�X; t� � χK�X; t�Ξ�α�
K (35)

or, in component form,

x�α�k � xk�X; t� � χkK�X; t�Ξ�α�
K ; k; K � 1; 2; 3: (36)

Eringen (1999) has little use for the microvolumes, the super-
script �α� is no longer used, and gives cesium chloride
(CsCl) in crystal form as an example of a deformable par-
ticle. In this case, a Cs� ion is at the center of a cube sur-
rounded by eight Cl� ions placed on the corners of the cube
(see also Toupin, 1964). The motion of the Cs� and Cl� ions
are accounted for by x�X; t� and χK�X; t�, respectively

Let us introduce the inverse micromotion XKk, de-
fined by

χkKXKl � δkl; χkKXLk � δKL: (37)

Multiplying ξ�α�k , given by equation (34), by XLk and using
equation (37) gives

Ξ�α�
K � XKk�x; t�ξ�α�k ; (38)

which in vector form becomes

Ξ�α� � Xk�x; t�ξ�α�k : (39)

The χK and Xk constitute two independent sets and Eringen
(1999) refers to them as directors, which at this point are
deformable and constitute extra degrees of freedom with

(a) (b)

Figure 2. (a) Schematic representation of a continuous medium with microstructure. The volumeΔV represents a macroelement, which
is composed of microelements with volumes ΔV�α�, α � 1; 2;… Capital and small letters represent the same variable before and after
deformation. Point P corresponds to the center of mass of the macrovolume. (b) Similar to (a) for a micropolar medium, which can be
represented by rigid elongated microelements (bold segments at Q and q). After Eringen (1968).
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respect to a classical continuum medium. Now it is possible
to write the inverse motion corresponding to equation (36)

X�α�
K � XK�x; t� � XKk�x; t�ξ�α�k : (40)

Strain and Microstrain Tensors

The displacement vector u�α� is defined as the difference
between x�α� and X�α�:

u�α� � x� ξ�α� � �X� Ξ�α�� � u� ξ�α� �Ξ�α�;

u≡ x � X: (41)

The vector u is the displacement vector of the classical
theory, introduced in equation (25). This vector will have
components UK and uk when referring to the material and
spatial coordinates, respectively, which can be written as

UK ≡ u · IK � xkδkK � XK; (42)

uk ≡ u · ik � xk � XKδKk; (43)

where IK and ik indicate the unit vectors along the K and k
axes in the material and spatial coordinates, respectively, and

δkK ≡ δKk ≡ ik · IK: (44)

Because the material and spatial coordinate systems have
been chosen to be the same, δKk is the standard Kronecker’s
delta. Therefore, xkδkK � xK and XKδkK � Xk, and equa-
tions (42) and (43) can be rewritten as

Uk � xk � Xk; uK � xK � XK: (45)

We interchanged K and k because they are dummy indices.
Next, differentiating Uk with respect to XK and uK with
respect to xk and rearranging gives

xk;K � δkK �Uk;K ≡ �δLK �UL;K�δkL (46)

and

XK;k � δKk � uK;k ≡ �δlk � ul;k�δKl: (47)

The xk;K and XK;k are the components of the classical defor-
mation gradients.

Now we will write u�α� in material and spatial coordi-
nates. Writing equation (41) in component form and using
equations (34) and (38), we have

u�α�K � UK � χKLΞ
�α�
L � Ξ�α�

K

� UK � �χKL � δKL�Ξ�α�
L ≡ UK � ΦKLΞ

�α�
L ; (48)

u�α�k � uk � ξ�α�k � Xklξ
�α�
l

� uk � �δkl � Xkl�ξ�α�l ≡ uk � ϕklξ
�α�
l ; (49)

where the tensors ΦKL and ϕkl are defined by the identities.
From these definitions we can also write

χkK � δkK � ΦkK � �δLK � ΦLK�δkL (50)

and

XKk � δKk � ϕKk � �δlk � ϕlk�δKl: (51)

The indices in these equations are different from those used
in equations (48) and (49).

As in the classical theory, significant simplifications are
possible when the equations are linearized, which requires
that the absolute value of the tensor components be much
smaller than one. Some of the consequences of this assump-
tion are that the distinctions between material and spatial
representations, between uk and Uk, and between ϕkl and
ΦKL disappear. In the following the linear theory will be
discussed, but the distinction between the two representa-
tions will be maintained for clarity.

In the linearized theory, deformation is represented by a
strain tensor, similar to that of classical elasticity, and two
microstrain tensors, which do not have classical analogues.
These three tensors are derived from consideration of the
squares of the differential line elements in the deformed
body, and in the Lagrangian representation they will be in-
dicated by EKL, EKL, and ΓKLM, respectively, and defined by

EKL � 1

2
�UK;L �UL;K�; (52)

EKL � ΦKL �UL;K; (53)

ΓKLM � ΦKL;M: (54)

In Eulerian coordinates the corresponding expressions are

ekl �
1

2
�uk;l � ul;k�; (55)

ϵkl � ϕkl � ul;k; (56)

γklm � �ϕkl;m: (57)

Note the sign differences in equations (54) and (57).

Micropolar Strains and Rotations

As equation (36) shows, the deformation described so
far is very general and requires the knowledge of twelve
functions, the three xk and the nine χkK. However, a signifi-
cant simplification is achieved under the assumption that the
medium is composed of rigid elongated microelements and
that ΦKL and ϕkl are antisymmetric, that is,

ΦKL � �ΦLK; ϕkl � �ϕlk (58)
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(Eringen, 1966). With these properties and the linearity as-
sumption, the χkK and XKk given by equations (50) and (51)
become the components of tensors representing infinitesimal
rotations (see equation 10). Let us investigate this type of
deformation in more detail. The tensor ΦKL has associated
with it a vector Φ (the material microrotation vector) with
components ΦK such that

ΦK � 1

2
ϵKLMΦML; ΦKL � �ϵKLMΦM (59)

(see the Appendix). Using this expression for ΦKL in equa-
tion (50) gives

χkK � δkK � ϵkKMΦM: (60)

Eringen (1999) obtained a similar equation (equation 1.3.15
in the reference) by first writing ξ as the result of a finite
rotation (see equation 1) of angle ϕm (similar toΦM) and then
assuming that ϕm is small and defined a micropolar contin-
uum by the property that the directors are orthonormal,
that is,

χkKχlK � δkl; XKkXLk � δKL: (61)

This definition is consistent with equations (50) and (51) un-
der the condition that the rotations are infinitesimal. More-
over, if the second of equations (61) is multiplied by XLl and
equation (37) is used, we get χkL � XLk, and equation (37)
becomes

χkKχlK � δkl; χkKχkL � δKL (62)

so that the directors of a micropolar continuum are rigid.
To relate these results to those from classical linear elas-

ticity recall that the classical rotation tensor RKL is given by

RKL � �RLK � 1

2
�UK;L �UL;K� (63)

(see equation 30). This tensor has an associated vector,
indicated by R, with components that satisfy

RK � 1

2
ϵKLMRML � 1

2
ϵKLMUM;L; RKL � �ϵKLMRM:

(64)

Then using

UK;L ≡ EKL � RKL � EKL � ϵKLMRM (65)

and equation (59) with equations (53) and (54) gives

EKL � EKL � ϵKLM�RM � ΦM�; (66)

ΓKLM � �ϵKLNΦN;M: (67)

In the Eulerian description the corresponding equa-
tions are

rk �
1

2
ϵklmrml �

1

2
ϵklmum;l; rkl � �ϵklmrm; (68)

uk;l � ekl � rkl � ekl � ϵklmrm; (69)

ϵkl � ekl � ϵklm�rm � ϕm�; (70)

γklm � ϵklnϕn;m: (71)

Note the sign differences in equations (67) and (71). Recall
the capital and small letter convention to represent a variable
in the Lagrangian and Eulerian descriptions, respectively. In
particular, the ϕm are the components of the spatial micro-
rotation vector ϕ. For future reference we also note the
Eulerian expression corresponding to equation (60)

XKl � δKl � ϵKlmϕm: (72)

Now combine equations (34) and (60):

ξ�α�k � �δkK � ϵkKMΦ�Ξ�α�
K � Ξ�α�

k � �Ξ�α� ×Φ�k: (73)

Therefore,

ξ�α� � Ξ�α� �Ξ�α� ×Φ � Ξ�α� �Φ × Ξ�α�: (74)

Comparison of this result with equation (8) shows that ξ�α� is
obtained by a rotation of angle jΦj of Ξ�α� about a vector Φ.
Finally, introducing equation (74) into equation (33) and
using equation (41) to write x in terms of u, we get the fol-
lowing expression for x�α�:

x�α� � X� u� Ξ�α� �Φ ×Ξ�α�: (75)

The geometric significance of this result is shown in Fig-
ure 2b.

Velocity, Acceleration, Microrotation, and Spin

Velocity, indicated by v, is defined as the time rate of
change of the position vector of a material point, that is,
v � _x�X; t�. Acceleration, indicated by a, is the time rate of
change of the velocity of a material point, that is, a � _v � �x.
These definitions apply to the motion of the center of mass X
of a macrovolume. Now the relative velocity and acceleration
of a material point with coordinates X�Ξ with respect to
point X will be introduced. The relative motion is given by
equation (34), and the corresponding velocity and accelera-
tion are given by

_ξ � _χK�X; t�ΞK; �ξ � �χK�X; t�ΞK: (76)

To simplify the notation the superscript �α� will be dropped
when not essential. These two expressions will be rewritten
using equation (38). For the velocity we get
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_ξ � νk�x; t�ξk; _ξl � νlkξk; (77)

where

νk�x; t� � _χK�X�x; t�; t�XKk�x; t�; νlk � _χlKXKk:

(78)

The three vectors νk are known as the gyration vectors and
their components νlk constitute the gyration tensor. For the
acceleration we have

�ξ � _νkξk � νk
_ξk � _νkξk � νkνklξl; (79)

where equation (77) was used. Alternatively,

�ξ � αk�x; t�ξ; �ξk � αklξl; (80)

where

αk�x; t� � _νk � νmνmk; αlk � _νlk � νlmνmk: (81)

The αlk constitute the components of the spin tensor.
The previous expressions for _ξ and �ξ are general. Be-

cause here we are dealing with micropolar media, equa-
tions (60) and (72) must be used. This gives

νkl � �ϵklM _ΦM � ϵkKMϵKlm
_ΦMϕm: (82)

In the linearized theory the second term in this equation is
neglected, and there is no distinction between the material
and spatial descriptions. In this case we have

νkl � �ϵklm _ϕm; (83)

where the approximation ϕ≈Φ, valid for the linear the-
ory, was used. This result shows that _ϕm is the vector asso-
ciated with the antisymmetric tensor νkl. Let us introduce the
microgyration vector ν, with components given by

νk � _ϕk: (84)

Then

νkl � �ϵklmνm; νk �
1

2
ϵklmνml: (85)

Introducing this νkl in equation (77) allows us to get the fol-
lowing expression for _ξ:

_ξ � �ξ × ν: (86)

Finally, the total velocity at a point with material coor-
dinates X� Ξ is given by

v�α� � _x�α� � _x� _ξ � v � ξ × ν; (87)

where v indicates the velocity of the centroid of the macro-
volume, while the second term on the right gives the relative
velocity about the centroid.

Mechanical Balance Laws

Herewe are interested in the conservation ofmass and the
balance of linear momentum and angular momentum (or mo-
ment ofmomentum). A basic assumption is that the properties
of a macrovolume are obtained by averaging over its micro-
volumes, for which the classical balance laws are assumed to
be valid. First wewill consider the total mass. Let ρ�α�o ,ΔV�α�

o ,
ρ�α�, andΔv�α� indicate the density and volume of a microele-
ment before and after deformation, respectively. A basic prin-
ciple is that the mass of each microelement remains constant
during any deformation, that is,

ρ�α�o ΔV�α�
o � ρ�α�Δv�α� (88)

(no summation over α). The total mass of the macrovolume
before and after deformation is obtained by summing over
all the corresponding microvolumes:

ρoΔVo ≡
X
α

ρ�α�o ΔV�α�
o �

X
α

ρ�α�Δv�α� ≡ ρΔv: (89)

This equation defines ρo�X� and ρ�x; t� for the macrovolume
ΔVo (equivalent to ΔV in Fig. 2) before and after the defor-
mation. The fact that the point X is the center of mass of the
macroelement means that

X
α

ρ�α�o Ξ�α�ΔV�α�
o � 0: (90)

Introducing equations (39) and (88) into this equation gives

Xk

X
α

ρ�α�ξ�α�k Δv�α� � 0: (91)

BecauseXk is generally nonzero, the sumoverαmust be equal
to zero, which means that x is the center of mass after the
deformation.

Now compute the following second moments

ρoIKLΔVo ≡
X
α

ρ�α�o Ξ�α�
K Ξ�α�

L ΔV�α�
o : (92)

Each term in the summation on the right-hand side can be
interpreted as the product of two factors. One is a distance
and the other is the product of a mass and a distance. The
second factor is known as linear moment, while distance
times linear moment is known as second moment (or qua-
dratic moment, Synge, 1960). The second moments allow
the introduction of inertia tensors, as follows. Introducing
equations (38) and (88) into this equation gives

IKL � iklXKkXLl; (93)

where

ρiklΔv �
X
α

ρ�α�ξ�α�k ξ�α�l Δv�α�: (94)
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The quantities IKL and ikl are known as the material and spa-
tial microinertia tensors. The following combinations occur
frequently

JKL � IMMδKL � IKL; jkl � immδkl � ikl (95)

and are identical to the inertia tensors of rigid body
dynamics.

The momentum of a macroelement is equal to the vector
sum of the momenta of its microelements, namely

Δp �
X
α

ρ�α�v�α�Δv�α� �
X
α

ρ�α��v� _ξ�Δv�α�

� v
X
α

ρ�α�Δv�α� � ν ×
X
α

ρ�α�ξΔv�α�

� v
X
α

ρ�α�Δv�α�; (96)

where equation (87) and the fact that x is the center of mass
were used. In the limit we can write dp � ρvdv, and the total
linear momentum of the body is given by

p �
Z
V
ρvdv; (97)

where V is the volume of the body after deformation.
The principle of linear momentum states that the time

rate of p is equal to the sum of all the applied forces, namely

d

dt

Z
V
ρvdv �

Z
S
t da�

Z
V
ρf dv; (98)

where t is the stress tensor, f is the body force, and S is the
surface of V. This equation is identical to that of classical
continuum mechanics.

The angular momentum of a macroelement is equal
to the vector sum of the angular momenta of its microele-
ments, namely

ΔM �
X
α

x�α� × ρ�α�v�α�Δv�α�

�
X
α

�x� ξ� × ρ�α��v� _ξ�Δv�α�

� x × v
X
α

ρ�α�Δv�α� �
X
α

ξ × ρ�α� _ξΔv�α�; (99)

where equations (33) and (87) were used and two terms
vanish because x is the center of mass. Then, using equa-
tions (86) and (89) in the limit we have

dM � x × ρvdv� ρσdv; (100)

where

ρσΔv �
X
α

ρ�α�ξ × �ν × ξ�Δv�α�: (101)

The vector σ is called the intrinsic spin, with components
given by

σl � jklνk: (102)

This expression is obtained after expanding the vector prod-
ucts in equation (101) and then using equations (94) and
(95). The total angular momentum of a micropolar body is
given by

M �
Z
V
�x × ρv� ρσ� dv: (103)

The only difference with the corresponding expression for
the classical theory is the presence of the spin vector, intro-
duced by the rotation of the microelements.

The principle of angular momentum states that the time
rate of change of the angular momentum about a point is
equal to the sum of all applied couples and the moment of
all the forces about the same point. Thus,

d

dt

Z
V
�x × ρv� ρσ�dv �

Z
S
�x × t�m� da

�
Z
V
ρ�l� x × f� dv; (104)

where m and l are surface and body couples. As noted at the
beginning of this section, in classical continuum mechanics
the surface and body couples are neglected because the sur-
face and volume elements are allowed to go to zero, which
means that the arms of the couples, and thus the couples,
vanish. In contrast, in micropolar elasticity the surface and
volume elements remain finite, which means that the couples
cannot be neglected.

Stress and Couple Stress

Applying the well-known tetrahedron argument first
with the principle of linear momentum and then with the
principle of angular momentum (Eringen, 1962) gives

t�n� � nktk; m�n� � nkmk; (105)

where n � �n1; n2; n3� is a vector normal to the surface on
which t acts and tk is the stress vector on the surface with
normal vector ik. A similar definition applies to mk. Now
writing tk and mk in component form

tk � tklil; mk � mklil; (106)

allows introducing the stress tensor tkl and the couple stress
tensor mkl:

t�n� � tklnkil; m�n� � mklnkil: (107)

Local Balance Laws

The result of these laws will be two equations of mo-
tion, obtained using the balance of linear momentum and
the balance of angular momentum. Using Gauss’ theorem
with equations (98) and (104) we can convert the surface in-
tegrals to volume integrals. The total time derivatives can be
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exchanged with the integrals and become partial derivatives
with respect to time in the linear theory. As a result we get

Z
v
�tk;k � ρ�f � _v�� dv � 0; (108)

Z
v
�mk;k � ik × tk � ρ�l � _σ�� dv

�
Z
v
x × �tk;k � ρ�f � _v��dv � 0; (109)

where v is a small volume within the body. Because v is ar-
bitrary, these two equations will be satisfied when the inte-
grands are equal to zero. Then, using equations (105) and
(107) we get

tlk;l � ρ�fk � _vk� � 0; (110)

mlk;l � ϵkmntmn � ρ�lk � _σk� � 0: (111)

These are the equations of motion for a micropolar me-
dium and correspond to the local balance of momenta. Equa-
tion (110) is the equation of motion of classical elasticity.
Equation (111) is an extension of the equation that is ob-
tained when proving the classical result that the stress tensor
is symmetric, that is, tlk � tkl (e.g., Atkin and Fox, 1980;
Pujol, 2003). Ifmk, σ, and l are all equal to zero, we recover
the symmetry of the stress tensor. Therefore, in a micropolar
medium the stress tensor is, in general, nonsymmetric (or
asymmetric).

Theory of Micropolar Elasticity

After having introduced strain and stress, it is necessary
to establish the relation between them, which is done through
constitutive equations. To establish them it is necessary to
use thermodynamic arguments, which lead to the following
relations between the stress and couple stress tensors and the
free energy Ψ of the system:

tkl � ρ
∂Ψ
∂ϵkl ; mkl �

∂Ψ
∂ϕl;k

: (112)

In linear theoryΨ is expressed as a quadratic function of
ϵk;l and ϕk;l:

ρΨ � A0 � Aklϵkl �
1

2
Aklmnϵklϵmn � Bklϕk;l

� 1

2
Bklmnϕk;lϕm;n � Cklmnϵklϕm;n; (113)

where the subscripted A and B are functions of temperature
only. Equations (112) and (113) are extensions of classical
continuum mechanics results. Equation (113) must be in-
variant under orthogonal transformations (which include ro-
tations and reflections, e.g., Eringen, 1962, 1967). However,

this condition is not met by the fourth and sixth terms, which
include derivatives of the pseudovector ϕk. In this case the
transformation law under rotations and reflections is

ϕ0
k;l � �akmalnϕm;n; (114)

where the aij are the components of the transformation ma-
trix and the plus or minus signs depend on whether the
determinant of the matrix is equal to 1 (pure rotation) or to
�1 (reflections are included). The tensor ϵkl satisfies a re-
lation similar to equation (114) with a positive sign only.
As a consequence, the fourth and sixth terms of equa-
tion (113) change sign upon reflection while the other terms
are always positive. Therefore, invariance requires Bkl � 0

and Cklmn � 0.
Equation (113) also shows that the tensors in the third

and fifth terms are symmetric with respect to the pairs of
indices kl and mn, which means that Aklmn � Amnkl and
Bklmn � Bmnkl. Under these conditions equations (112)
and (113) give

tkl � Akl � Aklmnϵmn; (115)

mkl � Blkmnϕm;n: (116)

If the initial stress of the system is zero, as assumed here,
Akl � 0. If, in addition, the body is isotropic,

tkl � λϵrrδkl � �μ� κ�ϵkl � μϵlk; (117)

mkl � αϕr;rδkl � βϕk;l � γϕl;k; (118)

where μ� κ is a single coefficient written as a sum for
convenience. In classical elasticity κ � 0 because of the
symmetry of the stress tensor. Using equation (70), equa-
tion (117) gives

tkl � λerrδkl � �2μ� κ�ekl � κϵklm�rm � ϕm�: (119)

If κ � α � β � γ � 0, equation (118) vanishes and equa-
tion (119) becomes the Hooke’s law of the classical theory
of isotropic elasticity. Therefore, another difference between
the linearized isotropic micropolar and classical elasticity
theories is the presence in the former of four additional elas-
tic moduli. Because Nowacki (1986) uses similar symbols
but some of them have a different meaning, the equivalence
between the two sets of symbols is given here. Using the
subscripts E and N to identify the symbols used by Eringen
and by Nowacki we have

μE � μN � αN; κE � 2αN; λE � λN;

γE � γN � εN; βE � γN � εN; αE � βN

(120)

(Ostoja-Starzewski and Jasiuk, 1995).
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Field Equations and Propagation of Waves

The field equations are the equations of motion in terms
of u and ϕ. Introducing the constitutive equations (118) and
(119) into equations (110) and (111), using (69), (84), and
(102), letting jkl � jδkl (isotropic solid), and assuming that j
and ρ are constant gives

�λ� μ�ul;lk � �μ� κ�uk;ll � κϵklmϕm;l � ρ�fk � �uk� � 0;

(121)

�α� β�ϕl;lk � γϕk;ll � κϵklmum;l � 2κϕk

� ρ�lk � j �ϕk� � 0: (122)

In linear theory the approximations �uk ≈ ∂2uk=∂t2 and �ϕk ≈∂2ϕk=∂t2 are also introduced. In vector form equations (121)
and (122) are

�λ� 2μ� κ�∇∇ · u � �μ� κ�∇ × ∇ × u� κ∇ × ϕ

� ρ�f � �u� � 0; (123)

�α� β � γ�∇∇ · ϕ � γ∇ × ∇ × ϕ� κ∇ × u � 2κϕ

� ρ�l � j �ϕ� � 0: (124)

Again, if κ � α � β � γ � 0, we recover the equations of
linear elasticity. In equations (123) and (124) u and ϕ are un-
known, f and lmust be prescribed, and the remaining param-
eters must be derived experimentally. These two equations
are coupled, which means that solving them is considerably
more complicated than in the classical case. An early and
comprehensive analysis of the solutions corresponding to
plane harmonic body waves in infinite media and in a half-
space was provided by Parfitt and Eringen (1969) and is dis-
cussed in Eringen (1968). Assuming that f and l are both
equal to zero, equations (123) and (124) can be rewritten as

�c21 � c23�∇∇ · u � �c22 � c23�∇ × ∇ × u� c23∇ × ϕ � �u;

(125)

�c24 � c25�∇∇ · ϕ � c24∇ ×∇ × ϕ� ω2
0∇ × u � 2ω2

0ϕ � �ϕ;

(126)

where

c21 �
λ� 2μ

ρ
; c22 �

μ
ρ
; c23 �

κ
ρ
; c24 �

γ
ρj

;

c25 �
α� β
ρj

; ω2
0 �

c23
j
� κ

ρj
: (127)

The vectors u and ϕ can be decomposed into scalar and
vector potentials as follows

u � ∇u� ∇ × U; ∇ · U � 0; (128)

ϕ � ∇ϕ�∇ ×Φ; ∇ ·Φ � 0: (129)

Introducing these expressions into equations (125) and (126)
shows that they are satisfied if

�c21 � c23�∇2u � �u; (130)

�c24 � c25�∇2ϕ � 2ω2
0ϕ � �ϕ; (131)

�c22 � c23�∇2U� c23∇ ×Φ � �U; (132)

c24∇2Φ � 2ω2
0Φ� ω2

0∇ × U � �Φ: (133)

The equations involving the scalar potentials (u and ϕ) are
uncoupled while those involving the vector potentials (U and
Φ) are coupled. In Eringen (1999) some of the coefficients
are defined differently: his c21, c

2
3, and c22 are given by the

sums in parentheses in equations (130)–(132), respectively,
while his ω2

0 is equal to twice the ω2
0 used here.

The main result of the Parfitt and Eringen (1969) analy-
sis is the presence of four types of waves propagating with
different velocities. As equations (130) and (131) show, two
of the waves are longitudinal, with one of them similar to the
classical dilatational waves and the other microrotational.
The latter is dispersive and exists only above a cutoff fre-
quency ωc �

���
2

p
ω0. Below this frequency the waves become

sinusoidal vibrations that decay with distance. The other two
waves involve coupled transverse displacement and trans-
verse microrotation. These waves are also dispersive, and the
latter exists only for frequencies higher than ωc. The trans-
verse displacement wave is similar to the shear wave of
classical elasticity. Additional results can be found in, for
example, Nowacki (1986) and Kulesh (2009) and refer-
ences therein. The latter work suggests possible ways to test
whether micropolar effects are present by analysis of surface
waves. A special case corresponding to ∇ · ϕ � 0 has been
investigated by Grekova et al. (2009).
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Appendix

Basic Tensor Definitions and Properties

The sections on rotations and finite deformation are pre-
sented in coordinate-free form, that is, components are not
used. Therefore, the resulting tensor equations are valid in
any coordinate system and are simpler in appearance than
when written in component form. The basic definitions and
properties needed for an understanding of the coordinate-
free equations are given next (see Ogden, 1997; Chad-
wick, 1999).
(1) Let S and T indicate arbitrary second-order tensors and

u and v indicate arbitrary vectors. The transpose ST of
S, the identity tensor I, and the inner product ST are
defined by

v · �STu� � u · �Sv�; (A1)

Iu � u; (A2)

and

�ST�u � S�Tu�; (A3)

respectively. The dot stands for scalar product. In Car-
tesian component form ST is written as SikTkj, where
the summation convention over repeated indices applies.
In addition, the tensors S and T can be represented by
3 × 3 matrices S and T with components Sim and Tnj,
which shows that ST is analogous to a matrix product
and Su to Su.

(2) A pair of juxtaposed vectors constitutes a dyad (e.g.,
Mase, 1970; Pujol, 2003). Given two vectors s and t,
the dyad st is defined by the following property:

�st�r � �t · r�s; any r: (A4)

In component form

�st�ij � sitj: (A5)

The tensor product of s and t, indicated by s⊗t (e.g.,
Ogden, 1997; Chadwick, 1999), is equivalent to the
dyad st. A sum of dyads is known as a dyadic.

(3) If vectors a, b, and c constitute an orthonormal basis,

aa� bb� cc � I: (A6)

To verify this relation consider an arbitrary vector v,
which can be written as v � vaa� vbb� vcc. Then

�aa� bb� cc��vaa� vbb� vcc� � v: (A7)

Therefore, the sum of the three dyads is equal to I. Here
equation (A4) and the orthonormality of the basis vec-
tors were used.

(4) If a, b, c, and d are arbitrary vectors and S � ab and
T � cd, then (A3) and (A4) give

�ab��cd� � �b · c�ad: (A8)

(5) The transpose of ab is �ab�T � ba. This can be verified
by substitution in equation (A1) and using equa-
tion (A4), which gives v · ��ba�u� � �a · u��v · b� �
u · ��a · b�v�.

(6) The determinant of a tensor, indicated by det, is equal to
the determinant of the matrix of its components and does
not depend on the choice of basis. Two properties of de-
terminants to be used here are

det�ST� � det S detT; detST � det S: (A9)

(7) If detT ≠ 0, the inverse tensor T�1 is defined by

TT�1 � T�1T � I: (A10)

(8) The eigenvectors and eigenvalues of a tensor T, denoted
by v and λ, satisfy

Tv � λv (A11)

and can be computed solving the following equation in
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terms of Cartesian components:

det�Tij � λδij� � 0: (A12)

This is an equation similar to the one that arises when
solving the eigenvalue problem for matrices and as a
consequence, the results derived for matrices carry ver-
batim to second-order tensors.

(9) A tensor T is said to be positive definite if v · �Tv� > 0

for all nonzero v and positive semidefinite if v · �Tv� ≥
0. The eigenvalues of positive definite and semidefinite
tensors are positive and nonnegative, respectively. These
results are similar to those obtained for matrices (e.g.,
Noble and Daniel, 1977; Pujol, 2007).

Proof of Equation (1)

Refer to Figure 1. The vector r is rotated an angle ϕ
about a. The segments BA and BC have the same lengths.
The point D is the projection of point C on BA. Let us in-
troduce a set of orthonormal vectors a, b, and c with b along
BA. The vector r0 will be written as the sum of three vectors

r0 � Qr � OC
���! � OB

���!� BD
���!�DC

���!
; (A13)

where

OB
���! � �r · a�a; BD

���! � d cosϕb; DC
���! � d sinϕc;

(A14)

and

d � jBAj � jBCj: (A15)

The vectors b and c are given by

b � 1

d
BA
��! � 1

d
�r �OB

���!� � 1

d
�r � �r · a�a�; (A16)

c � a × b � 1

d
a × �r � �r · a�a� � 1

d
a × r: (A17)

Then

Q � �r · a�a� cosϕ�r � �r · a�a� � sinϕa × r

� cosϕr� �1 � cosϕ��r · a�a� sinϕa × r: (A18)

Proof of Equation (2)

Let r in equation (A18) be equal to a, b, and c.
This gives

Qa � a; Qb � cosϕb� sinϕc;

Qc � � sinϕb� cosϕc:
(A19)

These three equations show that the effect of Q is a counter-
clockwise rotation of angle ϕ of the basis vectors a, b, and c

about the a axis. These equations also show that Q can be
written as follows:

Q � aa� �bb� cc� cosϕ � �bc � cb� sinϕ (A20)

(Ogden, 1997; Chadwick, 1999). To verify this result apply
Q to a, b, and c and use equation (A4) and the orthonor-
mality of the three vectors.

Proof of Equation (3)

Let us apply Q to r. Letting

ra � a · r; rb � b · r; rc � c · r; (A21)

and using equation (A20) we get

Qr � raa� �rbb� rcc� cosϕ � �rcb � rbc� sinϕ
� raa� �rb cosϕ � rc sinϕ�b� �rb sinϕ� rc cosϕ�c

(A22)

(Chadwick, 1999). To interpret this equation, consider the
vector rbc � �rb; rc� in the plane generated by the vectors
b and c. Then the factors in parentheses correspond to the
counterclockwise rotation of angle ϕ of rbc.

Proof of Equations (5) and (6)

QT is given by

QT � aa� �bb� cc� cosϕ � �cb � bc� sinϕ: (A23)

The product QTQ will include inner products such as

�aa��aa� � �a · a�aa � aa; �aa��bb� � �a · b�ab � 0;

�bc��cb� � �c · c�bb � bb; (A24)

where equation (A8) was used. As a consequence

QTQ � aa� bb� cc � I; (A25)

where equation (A6) was used. Similarly,

QQT � I: (A26)

This result and equation (A9) shows that

�detQ�2 � det I � 1: (A27)

Because detQ ≠ 0, Q�1 exists. Next multiplication of
equation (A25) on the right-hand side by Q�1 gives

Q�1 � QT: (A28)

Now let us compute the scalar product of Qr1 and
Qr2, given
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�Qr1� · �Qr2� � r1 · �QTQr2� � r1 · r2; (A29)

where equation (A1) was used with u � Qr2, S � Q,
and v � r1.

Finally, the length of Qr can be computed using equa-
tion (A29) with r � r1 � r2:

jQrj � ��Qr� · �Qr��1=2 � �r · r�1=2 � jrj: (A30)

Eigenvalues of Q

Equation (A27) shows that detQ � �1. If detQ � 1

(or �1), Q is said to be a proper (or improper) orthogonal
tensor. When dealing with matrices, an improper rotation
matrix (its determinant is equal to �1) includes reflections
of coordinate axes, which in turn change the handedness
of the coordinate system (e.g., from right- to left-handed).
A general property of determinants is that it is invariant under
a rotation of the basis vectors. Therefore, we can diagonalize
Q, with the diagonal elements equal to its eigenvalues λ1, λ2,
and λ3, which gives

detQ � λ1λ2λ3 � 1: (A31)

Another constraint on the eigenvalues of Q can be derived as
follows. Let vi and λi be an eigenvector and its correspond-
ing eigenvalue. This means that

Qvi � λivi; i � 1; 2; 3: (A32)

Now using equations (A30) and (A32) gives

jvij � jQvij � jλivij; (A33)

which in turn means that jλij � 1 (Noble and Daniel, 1977).
Finally, the λi are the solutions of a cubic equation, which
means that either the three of them are real, or one is real and
the other two form a complex conjugate pair. In the first case
we may have the values 1, 1, 1 or 1, �1, �1 (to satisfy
detQ � 1). In the second case we have 1, exp�iθ�, exp��iθ�.
The two special subcases, θ � 0 and θ � π, give the two
possible sets of eigenvalues when they are all real. The eigen-
vectors corresponding to the complex eigenvalues have com-
plex components. The angle θ can be taken as the rotation
angle ϕ that appears in equation (1) (Jansen and Boon, 1967).

Vector Associated with an Antisymmetric Tensor

A tensor T is antisymmetric if TT � �T. The corre-
sponding expression in component form is Tij � �Tji,
which is preserved under a rotation of coordinates. This im-
plies that all the diagonal elements are identically equal to
zero and that the tensor can be described by just three inde-
pendent components. Therefore, the tensor can be associated
with a vector t � �t1; t2; t3�, where each ti is one of T12, T13,

or T23 (taken as the three independent components of Tij).
These two entities are related as follows:

Tij � ϵijktk; (A34)

ti �
1

2
ϵijkTjk (A35)

(e.g., Pujol, 2003). These two expressions are consistent with
equations (59).

Derivation of Equation (7) from Equation (2)

The dyadic bc � cb in equations (2) and (A20) is anti-
symmetric and in component form is written as bicj � cibj.
The vector associated with this tensor (computed using equa-
tion A35) is b × c (Pujol, 2003), which in turn is equal to a.
This result, in combination with equation (A34) gives the
third term in equation (7). Now write the first two terms in
equation (2) as

cosϕ�aa� bb� cc� � �1 � cosϕ�aa
� cosϕI� �1 � cosϕ�aa; (A36)

where equation (A6) was used. This result corresponds to the
first two terms of equation (7) because the ij components of
I and aa are δij and aiaj.

Uniqueness of the Decomposition of a Tensor
into Symmetric and Antisymmetric Parts

Assume that there are two decompositions, that is,

D � S1 � A1 � S2 � A2; (A37)

where S1 and S2 are symmetric andA1 and A2 are antisym-
metric. Then,

DT � S1 � A1 � S2 � A2: (A38)

From these two equations we get

S1 � S2 � �A1 � A2� � 0; (A39)

S1 � S2 � �A1 � A2� � 0: (A40)

From the sum of these two equations we get S1 � S2 and
from the difference A1 � A2. Therefore, the decomposition
is unique.
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