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Abstract This article presents a concise review of the methods to obtain spectral
densities of the rotational components of seismic ground motion from the spectral
densities of both the translational components and wave propagation parameters.
The rotational components are obtained by decomposing ground motion at the site
into body and surface wave contributions with random amplitudes. To obtain rotation
the resulting stochastic fields of body and surface waves are differentiated with respect
to spatial coordinates. Assumption of plane waves radiating from a point source leads
to two rotational components: rocking around a horizontal axis perpendicular to the
source-site direction and torsion around a vertical axis. Construction of the rocking
acceleration spectral density from P-, SV-, and Rayleigh-wave contributions as well
as torsional spectral density from SH and Love waves (in terms of translational spec-
tral densities and wave parameters) are discussed in detail. A short numerical analysis
illustrates the proposed approach. A shift of the rotational spectra into higher frequen-
cies compared to respective translational spectra is observed.

Introduction

The presence of the rotational components in seismic
surface ground motion was occasionally discussed from the
early period of seismic engineering (e.g., Immamura, 1937;
Richter, 1958), and their engineering importance was pointed
out as early as in the 1970s (Newmark and Rosenblueth,
1971; Flaga, 1979). Recent analyses give more and more ar-
guments for treating seriously both the excitation surface ro-
tations and rotations in structural seismic response (Jalali and
Trifunac, 2009; Trifunac, 2009). However, without reliable
direct measurements of the strong ground rotations, indirect
methods of their assessment for engineering purposes shall
be considered. Since the early 1980s two such groups of
these methods have emerged in the literature:

• The first group of methods utilizes the synchronized
measurements of translational ground motions at the short
distances (e.g., Niazi, 1986; Oliveira and Bolt, 1989; Cas-
tellani and Zembaty, 1996).

• The second group of methods is based on the analyses of
the wave passage effects at the site, constructing respective
wave field, and on differentiating it with respect to a spatial
coordinate. These methods began from the landmark arti-
cle by Trifunac (1982) and were later developed by Lee
and Trifunac (1985, 1987, 2009), Rutenberg and Heide-
brecht (1985), Castellani and Boffi (1989), Zembaty et al.
(1993), and Li et al. (1997, 2002).

In what follows, the idea of body and surface-waves de-
compositions (Trifunac, 1982; Zembaty et al., 1993; Li et al.,

2002) will be revisited to formulate algorithms for construct-
ing spectral densities of the rocking and torsional compo-
nents in terms of the translational spectra, their cospectra,
and wave parameters.

Statement of the Problem

Theoretically, any site on the ground surface can be sub-
jected to six motions during an earthquake:

• three translations u�t�, v�t�, and w�t� along x, y, and z
axes and

• three rotations around these axes ψx�t�, ψy�t�, and ψz�t�.
The rotation ψz�t� around a vertical axis is usually called

torsion and will be denoted here as φ�t�, while the rotations
ψx�t� and ψy�t� around horizontal axes are called rockings.
Directing the axis x toward the epicenter defines the system
of so-called principal axes. Penzien and Watabe (1975) have
shown that three translational components of seismic ground
motion along the respective principal axes x, y, and z are
uncorrelated. What is more, when spatial seismic effects at
two distinct surface points A and B are analyzed, the respec-
tive coherence matrix transforms as a tensor when the system
of coordinates is changed (e.g., Zembaty, 1997). As it will
be shown later, the decomposition of plane waves analyzed
in the coordinate system of principal axes leads only to two
rotations:

• torsion φ � ψz around a vertical axis and
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• rocking ψ � ψy around a horizontal axis y, perpendicular
to site-epicenter direction (x axis).

Consider now elastic and isotropic half-space (Fig. 1). In
this article only the two rotations (φ and ψ) previously de-
fined are considered and drawn in Figure 1. The seismic sig-
nal comes to the site from beneath in the form of body waves
and horizontally on the surface as surface waves. To obtain
rotation each of these effects shall be treated separately. The
rotations from body waves were first examined by Trifunac
(1982), while the Rayleigh and Love waves were first exam-
ined by Zembaty et al. (1993) and Li et al. (2002). Before
any analysis of the rotational effects, each type of these
waves shall now be examined with respect to the decoupled
spatial effects on the ground surface.

Body-Wave Decomposition at the Ground Surface

P-Wave Effects

Consider P waves incident on the ground surface
(Fig. 2). Each incident P wave generates a reflected P wave
going down under the same angle ΘPP � ΘP and a reflected
SV wave at an angle ΘPS, which results from the familiar
formula of the geometric optics (e.g., Achenbach, 1973 or
Aki and Richards, 2002)

sin�ΘP�= sin�ΘPS� � cP=cS � S; (1)

where cP and cS are the P- and S-wave velocities of propa-
gation. Taking into account other laws of geometrical optics,
it is possible to obtain amplitudes of horizontal (Ax) and ver-
tical (Az) motions contributed by the P waves,

Ax � UPAP (2)

and

Az � WPAP; (3)

in terms of the amplitudes AP of the P waves, where coeffi-
cients UP and WP are formulated when observing the sum-
mations of respective projections of the motions on the free
surface (Fig. 2),

UP � �1� PP� sinΘP � PP cosΘPS (4)

and

WP � �PP � 1� cosΘP � PS sinΘPS: (5)

The reflection coefficients PP and PS of P waves from the
free surface are given by the following formulas (Achenbach,
1973; Aki and Richards, 2002):

PP �
�� 1

c2S
� 2p2� � 4p2 cos�ΘP�

cP

cos�ΘPS�
cS

� 1
c2S
� 2p2�2 � 4p2 cos�ΘP�

cP

cos�ΘPS�
cS

; (6)

PS �
4 cP
cS
p cos�ΘP�

cP
� 1
c2S
� 2p2�

� 1
c2S
� 2p2�2 � 4p2 cos�ΘP�

cP

cos�ΘPS�
cS

; (7)

where p � sin�ΘP�=cP is the horizontal slowness of the in-
cident P waves.

SV-Wave Effects

Now consider the SV waves incident on the ground sur-
face at the angle ΘSV (Fig. 3). In this case the reflection from

Figure 1. Principal axes and two rotations on the ground
surface.

Figure 2. P waves incident on the ground surface.

Figure 3. SV waves incident on the ground surface.
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the free surface results in an SV wave reflected at the same
angle ΘSS � ΘSV as well as a P wave reflected at the an-
gle ΘSP:

sin�ΘSV�= sin�ΘSP� � cS=cP: (8)

Analogously to equations (2) and (3) the amplitudes of re-
spective horizontal (Ax) and vertical (Az) contributions from
the SV waves can be written in terms of the amplitudes ASV

of the SV waves

Ax � USASV (9)

and

Az � WSASV; (10)

where US and WS are formulated by observing the summa-
tions of respective projections of the motions induced by SV
waves at the free surface (Fig. 3):

US � �1� SS� cos�ΘSV� � SP sin�ΘSP� (11)

and

WS � �1 � SS� sin�ΘSV� � SP cos�ΘSP�: (12)

The reflection coefficients SP and SS of SV waves from the
free surface are equal to

SP �
4 cS
cP
p cos�ΘSV �

cS
� 1
c2S
� 2p2�

� 1
c2S
� 2p2�2 � 4p2 cos�Θsp�

cP

cos�ΘSV �
cS

; (13)

SS �
� 1
c2S
� 2p2�2 � 4p2 cos�ΘSP�

cP

cos�ΘSV �
cS

� 1
c2S
� 2p2�2 � 4p2 cos�ΘSP�

cP

cos�ΘSV �
cS

; (14)

where p � sin�ΘSV�=cS now represents the horizontal slow-
ness of incident SV waves.

SH-Wave Effects

Consider now the SH waves incident at the free surface
with angle ΘSH (Fig. 4). This wave is reflected at the same
angle, and the same amplitude is kept for the reflected wave;
thus, the amplitudes of the ground motions along axes x and
z are equal to zero, while the amplitude along axis y does not
depend on the angle of incidence and equals

Av � 2ASH: (15)

Surface Wave Decomposition at the Ground Surface

Rayleigh Waves

The vertical and horizontal components of Rayleigh
waves propagating at the surface in plane x, z with amplitude

AR can be written directly in the form of the following spa-
tial field:

wR�t� � AR exp
�
iω
�
t � x

cR

��
; (16)

uR�t� � AR exp
�
iω
�
t � x

cR

��
; (17)

where cR stands for Rayleigh-wave velocity of propagation.

Love Waves

Love waves propagate along axis x when there is a
low-velocity top layer above the elastic half-space. These
waves generate displacements v�t� along the y axis (Fig. 1),
which are perpendicular to the direction of propagation, with
the remaining two orthogonal displacements kept zero
(u � w � 0). Thus, the Love wave with amplitude AL can
be written as follows:

vL�t� � AL exp
�
iω
�
t � x

cL

��
; (18)

where cL represents velocity of propagation of the
Love waves.

Calculating Rotations from Respective
Wave Contributions

According to the basic formulae of the continuum me-
chanics, the rocking component (about the y axis) depends
on the vertical spatial field of seismic ground motion

ψ � ∂w
∂x ; (19)

while the respective torsion (about the z axis) depends on two
orthogonal horizontal components

Figure 4. SH waves incident on the ground surface.
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φ � 1

2

�∂v
∂x �

∂u
∂y

�
: (20)

Now the rotational effects resulting from any type of the
waves described earlier can be obtained in two steps:

(1) by constructing spatial seismic fields induced by respec-
tive waves at the free surface, and

(2) by differentiating these fields with respect to spatial co-
ordinates (equations 19 and 20).

It should be noted here that the realistic ground motion
is a composition of various wave effects including, in
particular,

• various angles of incidence and
• various velocities of propagation.

The first effect is derived from the fact that the ground
beneath the site is often composed of layers, which will af-
fect the respective body-wave rays. The appropriate angles
and velocities of body waves at the ground surface can be
calculated using well known Haskell–Thomson formulae
(Thomson, 1950; Haskell, 1953), which is a rather tedious
but straightforward procedure. The second effect is perhaps
more difficult to account for, as the velocities of waves will
depend on the frequencies of respective harmonics and tend
to form groups.

Finally, one has to decide about the contribution of vari-
ous wave types, particularly the presence of the surface
waves. This means that the realistic prediction of the rota-
tional components from the wave passage effects contains
many unknown or random elements, and it may be difficult
to make it reliable. Thus, the researchers usually assume vari-
ous simplifications (see Lee and Trifunac, 1985, 1987; Zem-
baty et al., 1993; Li et al., 1997, 2002; Lee and Trifunac,
2009). As it was pointed out by Lee and Trifunac in their
very recent article, even when including all of the effects dis-
cussed here in the properly synthesized rotational ground
motion, many other complicated phenomena affecting rota-
tional ground motion are still not covered (e.g., nonlinear site
response). That is why any ground-motion models based on
linear theory and numerical models shall be treated very cau-
tiously (Lee and Trifunac, 2009).

In what follows the procedure to obtain a spectral repre-
sentation of the rocking component based on the spectral
densities of the translational components will be given in de-
tail following Zembaty et al. (1993).

Composing Spectral Density of the Rocking Ground
Motion Based on Translational Spectral Densities

The previous sections lead to the conclusion that the
rocking component will be an effect of (body) P and SV
waves as well as (surface) Rayleigh waves. First consider
the effect of body waves.

Rocking from Body-Wave Decomposition

Assume now that the horizontal and vertical accelera-
tions along the x and z axes (Fig. 1) can be written as in-
finitesimal contributions of stochastic processes written in
form of the integrands of Stieltjes–Fourier integrals (see
the Appendix)

eiωτd �̂u�ω�; eiωτd �̂w�ω� (21)

in frequency band interval (ω, ω� dω). The motion cor-
responding to this interval can be written as the sum of
P- and SV-wave contributions

d �u � d �uP � d �uS; d �w � d �wP � d �wS: (22)

Substituting the spectral representations (21) for �u and �w in
(22) one obtains

eiωτd �̂u�ω� � UPe
iωτd �̂ΦP�ω� �USe

iωτd �̂ΦS�ω�;

eiωτd �̂w�ω� � WPe
iωτd �̂ΦP�ω� �WSe

iωτd �̂ΦS�ω�;
(23)

where �̂ΦP�ω�, �̂ΦS�ω� are the random functions with orthogo-
nal increments (equations A1–A3), andUP,US,WP, andWS

are the coefficients given by the equations (4), (5), (11), and
(12). It should be pointed out that for the simplicity of this
analysis, we assume here that both P and SV waves come to
the surface at the same angle Θ � ΘP � ΘSV , which effec-
tively means the assumption of the homogeneous half-space
beneath the site. Solving the system of equation (23) for the
P- and SV-wave contributions, one obtains the inverse of
equation (23):

eiωtd �̂ΦP�ω� �
WS

D
eiωtd �̂u�ω� �US

D
eiωtd �̂w�ω�;

eiωtd �̂ΦS�ω� �
UP

D
eiωtd �̂w�ω� �WS

D
eiωtd �̂u�ω�;

(24)

where D � UPWS �WPUS. Thus, the vertical motion can
be presented as the sum of two wave terms propagating in
the x direction with different velocities as follows:

d �w�t;ω; x� � WP exp
�
iω
�
t � x sin�Θ�

cP

��
d �̂ΦP�ω�

�WS exp
�
iω
�
t � x sin�Θ�

cS

��
d �̂ΦS�ω�: (25)

The incremental rocking acceleration equals then

d �ψ�t;ω� � ∂
∂x d �w�t;ω; x�

����
x�0

; (26)
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d �ψ�t;ω; x� � WP

�
�iω sin�Θ�

cP

�

× exp
�
iω
�
t � x sin�Θ�

cP

��
d �̂ΦP�ω�

�WS

�
�iω sin�Θ�

cS

�

× exp
�
iω
�
t � x sin�Θ�

cS

��
d �̂ΦS�ω�: (27)

Substituting x � 0 and taking into account equation (24) one
obtains

d �ψ�t;ω� � WP

�
�iω sin�Θ�

cP

�
eiωt

WS

D
d �̂u�ω�

�WP

�
�iω sin�Θ�

cP

�
eiωt

Us

D
d �̂w�ω�

�WS

�
�iω sin�Θ�

cP

�
eiωt

Up

D
d �̂w�ω�

�WS

�
�iω sin�Θ�

cS

�
eiωt

WP

D
d �̂u�ω�: (28)

Introducing new coefficients

Wx �
WPWS

D

sin�Θ�
cP

�WPWS

D

sin�Θ�
cS

;

Wz �
UPWS

D

sin�Θ�
cS

�WPUS

D

sin�Θ�
cP

(29)

results in

d �ψ�t;ω� � Wx��iω�eiωtd �̂u�ω� �Wz��iω�eiωtd �̂w�ω�:
(30)

Finally, after integrating in the whole frequency domain one
obtains the spectral decomposition of the rocking component

�ψ�t� �
Z ∞
�∞

Wx��iω�eiωt d �̂u�ω�

�
Z ∞
�∞

Wz��iω�eiωt d �̂w�ω�; (31)

which by applying equations (A2) and (A3) from the Appen-
dix, can easily be used to obtain any stochastic characteristics
of ψ (e.g., a correlation function, power spectral density). For
example, the mean square rocking acceleration is given by

σ2
�ψ
�

Z ∞
�∞

jWxj2ω2S �u�ω�dω� 2

Z ∞
�∞

WxW
�
zω2S �u �w�ω� dω

�
Z ∞
�∞

jWzj2ω2S �w�ω� dω; (32)

where the asterisk denotes a complex conjugate. The inte-
grand in equation (32) is the power spectral density of the
rocking component:

S �ψ�ω� � jWxj2ω2S �u�ω� � 2WxW
�
z S �u �w�ω�

� jWzj2ω2S �w�ω�: (33)

It can be seen from the derived formulae that the rotational
spectrum is a function of the first derivatives of the verti-
cal and horizontal accelerations (the ω2 multiplier). In other
words, the function of the third derivative of respective dis-
placements as Su����ω� � ω6Su�ω�. It should also be noted that
if one follows the Penzien and Watabe (1975) assumption,
the second term of equation (33) vanishes, as there is no
correlation between vertical and horizontal components. In
this case equation (33) can be further simplified when as-
suming the same spectral density for both horizontal and ver-
tical ground motions differing only by an intensity factor η,
that is

S �w�ω� � η2S �u�ω�: (34)

This leads to

S �ψ�ω� � �jWxj2 � η2jWzj2�ω2S �u�ω�: (35)

The value of η can be estimated from the statistical analyses
of earthquake records. For example, following Trifunac and
Brady (1975) it can be taken approximately as 0.5. On the
other hand, in the near field the vertical component can be as
intensive as the horizontal one (e.g., the 1995 Northridge
earthquake). In any case the contribution of vertical and hori-
zontal components to the total rocking is controlled by the
values of the coefficients Wx and Wz.

In Figure 5a and b the moduli of these two coefficients
are presented as functions of the incidence angle of body
waves, the same for both P and SV waves ΘP � ΘSV . The
plots are calculated for three sets of data given in Table 1 and
representing firm (stiff) ground and hard rocks. Each set of
data results in different critical angles. The values of these
angles are displayed as straight lines in Figure 5.

For Θ < Θcr, Wx is real and negative while Wz is also
real but positive, although in any case the signs are lost when
formulating the spectral density. It can be seen from Figure 5
thatWx andWz increase for an overcritical angle with a con-
siderable variation with respect to the values of Poisson’s ra-
tio ν forWx and with little variation forWz. It means that the
rocking component increases with increasing incidence an-
gle, and that the vertical excitations contribute more to the
rocking than the horizontal ones. The horizontal contribution
to the rocking is, however, more sensitive to the choice of
ground and wave parameters, particularly for overcritical in-
cidence angles.

In Figure 6a the coefficient of equation (35) (i.e.,
jWxj2 � η2jWzj2) is shown for three values of ν versus in-
cidence angle Θ. It is a key coefficient in an analysis of
rotations, because together with the multiplier ω2 this coeffi-
cient transforms translation spectral density into rocking
spectral density.
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To investigate the contribution of possible cross correla-
tion of horizontal and vertical components one may also
assume an unlikely extreme case of full (100%) horizontal–
vertical correlation. In this case equation (33) takes the fol-
lowing form:

S �ψ�ω� � �jWxj2 � 2ηWxW
�
z � η2jWzj2�ω2S �w�ω�: (36)

The multiplier of equation (36) (i.e., jWxj2 � 2ηWxW
�
z �

η2jWzj2) is plotted in Figure 6b. It can be seen that Poisson’s
ratio influences the rocking response substantially. The dif-
ference for ν � 0:38 and ν � 0:25 is particularly substantial.
It can also be seen that cross correlation between vertical and
horizontal components may increase the rocking ground mo-
tion up to about 30%. All plots in Figure 6a and b show dra-
matic increase in the rocking component for overcritical
incidence angles. In Figure 6c and d the effect of the vertical-
to-horizontal intensity factor η on the rocking component
coefficients without horizontal–vertical correlation (jWxj2 �
η2jWzj2) and with full correlation (jWxj2 � 2ηWxW

�
z �

η2jWzj2) are analyzed. The plots are calculated for three
values of η � 0:25, η � 0:5, and η � 2:0. As could be ex-
pected the η factor substantially affects the rocking compo-
nent, while the difference between lack of horizontal–vertical
correlation (Fig. 6c) and full correlation (Fig. 6d) plays a less
important role.

Rocking from Rayleigh Waves

A quantitative estimation of the contribution of surface
waves (and in particular the Rayleigh waves) to the total
ground motion is not an easy task. Identification of the wave
types for the strong events at a particular site becomes pos-
sible via a dispersion analysis, when large scale measure-
ments of ground motion are carried out as in the spatial
measurements of the Strong-Motion Accelerograph Array
in Taiwan, Phase 1 (SMART-1) network. A rough and simple
idea has been proposed by Sugito et al. (1984). Analyzing
some Japanese strong-motion records, they proposed to sep-
arate surface waves from the total ground motion by using
the criterion of the first arrival time tS and a bandlimit ωS.
Following their approach, the motion due to surface waves
should be subtracted from the total motion and treated sepa-
rately (Fig. 7).

When considering the rocking component we restrict
our attention to Rayleigh waves. In an analogy to the earlier
treatment, the acceleration due to surface waves in the fre-
quency range ω, ω� dω can be written in the form of a wave
propagating in the horizontal direction with the velocity of
Rayleigh waves cR

d �wR � exp
�
iω
�
t � x

cR

��
d �̂w�ω�: (37)

From equation (37) the incremental surface rocking can be
obtained

d �ψR � ∂
∂x d �wR�t;ω; x�

����
x�0

�
�
� iω
cR

�
eiωtd �̂w�ω�: (38)

Taking into account the previously listed criteria of wave
separation (t > tS, �ωS < ω < ωS) one obtains

Figure 5. Moduli of Wx and Wy coefficients (equation 29) versus incidence angle Θ calculated for three values of Poisson coefficient
(1) ν � 0:38, (2) ν � 0:25, and (3) ν � 0:10.

Table 1
Data for Numerical Calculations

cP (m=sec) 6800 5200 4500
cS (m=sec) 3000 3000 3000
S � cP=cS 2.27 1.73 1.50

Poisson Modulus ν 0.38 0.25 0.10
Θcr (deg) 26.14 35.26 41.81
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d �ψR �
�
� iω
cR

�
eiωtd �̂w�ω� for � ωS < ω < ωS

and t > tS; (39)

�ψR �
Z

ωs

�ωs

WR��iω�eiωt d �̂w�ω� for t > tS; (40)

where WR � 1=cR. From this equation and equations (A2)
and (A3), one may write the equation for spectral density of
the rocking acceleration contributed by the surface waves

S �ψ�t;ω� � W2
Rω

2S �w�t;ω� for � ωS < ω < ωS

and t > tS: (41)

This formula only roughly shows the dependence between
vertical and rotational spectral density from Rayleigh-wave

propagation. The analysis of joint effects of body and surface
waves should be done in both the time and frequency do-
main. This general approach, including the nonstationary,
evolutionary description of stochastic processes, is presented
in detail in the article by Zembaty et al. (1993).

Spectral Density of the Torsional Ground Motion
Based on Translational Spectral Densities

Torsion from Body Waves

From equation (20) it is evident that the torsional com-
ponent (ground rotations around a vertical axis) will be built
by the derivatives of two horizontal motions u�t� and v�t�.
For plane waves and the principal coordinate system from
Figure 1, the SH component along the y axis depends only
on coordinate x, while P and SV contributions (along the x
axis) do not depend on y; therefore, equation (20) gives

Figure 6. The coefficients of rocking spectral densities with (a) and (c) zero horizontal–vertical correlation and with (b) and (d) full
correlation shown for (a) and (b) three values of Poisson coefficient (1) ν � 0:38, (2) ν � 0:25, and (3) ν � 0:10 and three values of vertical-
to-horizontal coefficient (1) η � 0:25, (2) η � 0:5, and (3) η � 2:0 with ν � 0:25.
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φ � 1

2

�∂v
∂x �

∂u
∂y

�
� 1

2

∂v
∂x : (42)

Introducing the random, incremental SH-wave contribution
to the acceleration along the y axis (Fig. 4)

d �v � 2 exp
�
iω
�
t � x sin�ΘSH�

cS

��
d �̂ΦSH�ω�; (43)

which for x � 0 equals

d �v � 2eiωtd �̂ΦSH�ω�; (44)

one obtains the incremental torsion in an analogous way
(as in the previous section on rocking from body-wave
decomposition):

d �φ � 1

2

∂
∂x d �v�t;ω; x�

����
x�0

� �iω sin�ΘSH�
cS

× eiωtd �̂ΦSH�ω�:

(45)

Taking into account equation (44) gives

d �φ � � iω
2

sin�ΘSH�
cS

d �̂v�ω�: (46)

Following further the procedure of the previous section on
rocking from body-wave decomposition and taking into ac-
count equations (A1) to (A3), it is possible to formulate spec-
tral density of torsional accelerations in terms of spectral
density of horizontal accelerations �v�t�:

S �φ�ω� �
sin2�ΘSH�
�2cS�2

ω2S �v�ω�: (47)

In Figure 8 the coefficient sin2�ΘSH�=�2cS�2 from equa-
tion (47) is plotted versus angle of incidence ΘSH. It can
be seen that the torsional component increases with the in-
creasing angle of incidence.

Torsion from Love Waves

The nonzero component of Love waves appears along
the y axis, transversal to its propagation direction (along
the x axis). Respective torsional acceleration can be obtained
in an analogous way as it was done for Rayleigh waves. Ran-
dom incremental horizontal accelerations due to Love waves
can be written as

d �vL � exp
�
iω
�
t � x

cL

��
d �̂vL�ω� (48)

from which the torsional, incremetal accelerations equal

d �φL � 1

2

∂
∂x d �vL�t;ω; x�

����
x�0

�
�
� iω
2cL

�
eiωtd �̂vL�ω�: (49)

Integrating in the whole frequency domain one obtains re-
spective torsion from Love waves as follows:

�φL �
Z ∞
�∞

VL��iω�eiωt d �̂v�ω�; (50)

with VL � 1=�2cL�. From equation (50) and applying the
formulae for spectral decompositions from the Appendix,
the respective spectral density of torsional accelerations can
be written in terms of respective translational, horizontal
spectral densities as follows:

S �φL�t;ω� � V2
Lω

2S �v�ω�: (51)

Figure 7. Body- and surface-wave separation is shown.

Figure 8. Coefficient sin2�ΘSH�=�2cS�2 of equation (47) versus
angle of incidence ΘSH .
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The question that remains to be answered regards the con-
tribution of the SH waves and Love waves to the actual
ground motion at a site as well as velocities of various spec-
tral components.

Summary and Conclusions

A stochastic, analytical approach to the problem of for-
mulating spectral densities of the rotational components of
seismic ground motion from wave passage effects has been
reported. After detailed analyses of body- and surface-wave
decompositions at the free surface, respective formulas for
rocking spectral density (around a horizontal axis), and tor-
sional spectral density (around a vertical axis) are derived.
The rotational spectral densities are formulated in terms of
the translational spectral densities (horizontal and vertical)
and wave parameters (propagation velocity, angle of inci-
dence). It is interesting to note that all resulting spectral
densities are functions of time derivatives of respective trans-
lational spectra (the ω2 factor). This indicates a shift to higher
frequencies of the resulting rotations in comparison to the
respective translational spectral densities. It may also result
in some problems when integrating the obtained spectral
densities when applying the classic Kanai–Tajimi engineer-
ing spectrum, which does not decay fast enough with an in-
creasing frequency. The article is illustrated by parametric
analysis of the effect of the angle of incidence of body waves
on rocking spectral density for a stiff site (firm ground) and
on the effect of incidence angle of SH waves on the respec-
tive torsional spectral density. It is interesting to note that all
these numerical analyses indicate substantial increase of the
rotational ground motion with increasing angle of incidence
of the body waves. As can be seen in Figure 6 these effects
are particularly apparent for rocking spectral densities for
overcritical angles.

To be applied in practice, the presented formulas need to
include the actual (usually layered) structure of the ground
beneath the site. It can be done by including the well-known
Haskell–Thomson formulae (Thomson, 1950, Haskell,
1953). It should be noted that in such cases the synthesized
rotational spectral densities may be quite complicated, as
they would have to reflect various angles of incidence of
the body waves appearing at the surface after multiple refrac-
tions and reflections; they would also have to cover various
velocities of propagation of the groups of waves, including
carefully chosen contributions of surface waves. One may
even expect that these effects can overshadow the changes
in the angle of incidence for near-field earthquakes.

However, when rotational spectral densities are finally
synthesized they can easily be applied either in classic
random vibration analyses of single- and multi-degree-of-
freedom structural systems or to simulate rotational time his-
tories using the Monte Carlo techniques (e.g., Rubinstein and
Reuven, 2008). The detailed procedures reported in this ar-
ticle (after careful scaling with recorded ground motions)

may serve as alternatives to other methods of generating ro-
tational surface ground motion (e.g., Lee and Trifunac, 1985,
1987, 2009).

Data and Resources

All data used in this article came from published sources
listed in the references.
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Appendix

Stieltjes–Fourier Representation
of Stochastic Processes

The stochastic analysis of combinations of random pro-
cesses standing for the ground accelerations is substantially
simplified when respective processes are written in the form
of Stieltjes–Fourier representation as follows.

Consider the stationary (steady) ground vibrations in the
form of accelerations, for example, the seismic ground mo-
tions �u�t�, �v�t�, and �w�t� from Figure 1. The classic spectral
representations of these three components of seismic motion
treated as stationary stochastic processes take the follow-
ing form:

�u�t� �
Z ∞
�∞

eiωt d �̂u�ω�; �v�t� �
Z ∞
�∞

eiωt d �̂v�ω�;

�w�t� �
Z ∞
�∞

eiωt d �̂w�ω�;
(A1)

in which dotted symbols are random processes in the fre-
quency domain with orthogonal increments. It means that,
for example, for �u�t�,

hd �u�ω1�d �̂u��ω2�i

�
�
hjd �̂u�ω�j2i � S �u�ω�dω for ω1 � ω2 � ω;
0 for ω1 ≠ ω2;

(A2)

where the symbol h::i denotes mathematical expectation, an
asterisk denotes complex conjugate, S �u�ω� represents power
spectral density of the acceleration process �u�t�, and ω �
angular frequency (rad=sec). For two different processes
(e.g., �u�t� and �w�t�) formula (A2) takes the form

hd �u�ω�d �̂w
��ω2�i

�
�
hjd �̂u�ω�d �̂w

��ω�ji � S �u �w�ω�dω for ω1 � ω2 � ω;
0 for ω1 ≠ ω2;

(A3)

in which S �u �w�ω� is the cospectral density. If the Penzien and
Watabe (1975) assumption of the lack of correlation of mo-
tions among the principal axes holds, then the cospectra
S �u �v�ω�, S �u �w�ω�, S �w �v�ω� vanish.
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