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Abstract

This is the documentation of fd3s, a �nite-di�erence solver of the elas-
tic wave equation in a spherical section. The programme allows to include
both attenuation and anisotropy with radial symmetry axis.
The documentation is organised as follows: We start with a detailed for-
mulation of the analytical problem. Special attention is given to the mod-
elling of anisotropy and attenuation. Then, we proceed with a description
of the spatio-temporal discretisation scheme with an emphasis on the im-
plementation of the free surface and absorbing boundary conditions. We
conclude with a brief overview of the Fortan source code and some tech-
nical details.
A previous version of fd3s was presented by Nissen-Meyer (2001) and
applied to the elastic wave propagation through subduction zones by Igel
et al. (2002).
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1 The analytical setup

1.1 Equations of motion
The programme fd3s solves the linearised momentum equation, given by

ρ(x)∂tv(x, t)−∇ · σ(x, t) = f(x, t) (1)

and subject to the free-surface boundary condition

σ · er|r=R = 0 . (2)

In equation (1) the symbols v and σ denote the velocity �eld and the stress tensor, respectively.
The external force density is symbolised by f , and ρ is the mass density of the steady-state
con�guration. Physically, equation (1) means that inertial and stress-induced forces are bal-
anced by body forces. The free surface condition (2) requires the normal stresses to vanish at
the Earth's surface, i.e., et r = R, where R is the radius of the Earth which is assumed to be
perfectly spherical. In order to obtain a complete set of equations, the stress tensor has to be
related to the velocity �eld. It is usually assumed that the rheology is anelastic, i.e., that the
stress rate ∂tσ depends linearly on the entire past history of the strain rate ∂tε:

∂tσ(x, t) =

∞Z
−∞

Ċ(x, t− t′) : ε̇(x, t′) dt′ , (3)

where

ε̇ :=
1

2

h
(∇v) + (∇v)T

i
. (4)

The fourth order tensor C is the elastic tensor with its symmetries

Cijkl = Cklij = Cjikl . (5)

A detailed derivation of equations (1) to (5) can be found for example in Dahlen & Tromp
(1998). It is important to note that the linear dependence of stress rate on strain rate history
is not a physical necessity as for example the momentum conservation (1). However, it has
been veri�ed for a number of materials that are thought to be the principal constituents of
the Earth's mantle (e.g. Jackson, 2000).
Since we are interested in the solution in a spherical section (see �gure 1), it is convenient to
compute ∇ · σ and ε̇ in spherical coordinates (e.g. Schade, 1999):

(∇ · σ)r = ∂rσrr +
1

r sin θ
∂ϕσϕr +

1

r
∂θσθr +

1

r
(2σrr + σθr cot θ − σϕϕ − σθθ) , (6a)

(∇ · σ)ϕ = ∂rσϕr +
1

r sin θ
∂ϕσϕϕ +

1

r
∂θσθϕ +

1

r
(3σrϕ + 2σθϕ cot θ) , (6b)

(∇ · σ)θ = ∂rσrθ +
1

r sin θ
∂ϕσϕθ +

1

r
∂θσθθ +

1

r
(3σrθ + σθθ cot θ − σϕϕ cot θ) , (6c)

ε̇rr = ∂rvr , (7a)

ε̇rϕ =
1

2

„
∂rvϕ +

1

r sin θ
∂ϕvr −

1

r
vϕ

«
, (7b)

ε̇rθ =
1

2

„
∂rvθ +

1

r
∂θvr −

1

r
vθ

«
, (7c)

ε̇ϕϕ =
1

r

„
1

sin θ
∂ϕvϕ + vr + vθ cot θ

«
, (7d)

ε̇ϕθ =
1

2r

„
1

sin θ
∂ϕvθ − vϕ cot θ + ∂θvϕ

«
, (7e)

ε̇θθ =
1

r
∂θvθ +

1

r
vr . (7f)

In equations (6a) to (7f) the symbols r, ϕ, θ denote the radius, longitude and colatitude,
respectively. Note that ε̇ is symmetric.
It remains to clarify the particular form of the elastic tensor C in equation (3). That means
that the anisotropy and the form of anelasticity have to be speci�ed.
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Figure 1: Spherical section excluding the centre. The variables r, θ and ϕ denote the radius,
colatitude and longitude, respectively. Picture taken from Nissen-Meyer, 2001.

1.2 Anisotropy
Anisotropy is the dependence of the elastic tensor on the orientation of the coordinate system.
In seismological terms, anisotropy is the dependence of seismic velocities on the propagation
direction and polarisation of an elastic wave. It is thought to play a major role especially in
the Earth's crust and upper mantle.
Besides the splitting of shear waves, the so-called Love wave-Rayleigh wave discrepancy is
one of the principal seismic observations that is directly related to anisotropy: A Love wave
and a Rayleigh wave travelling in the same direction usually exhibit di�erent wave speeds due
their di�erent polarisations. This led to the inclusion of anisotropy with radial symmetry axis
into the global reference model PREM (Dziewonski & Anderson, 1981). In this model the
anisotropy is limited to the upper 220 km. Interestingly, the azimuthal dependence of seismic
wave speeds seems to play a minor role in the upper mantle of the Earth, the only notable
exception being the upper mantle under the Paci�c (Eckström & Dziewonski, 1998).
Guided by these observations, we decided to implement anisotropy with radial symmetry axis
in fd3s. For such a medium, there are only 5 independent elastic tensor components that are
di�erent from zero. Due to the symmetry relations (5) they can be summarised in a 6 × 6
matrix (e.g. Babuska & Cara, 1991):0BBBBB@

crrrr crrϕϕ crrθθ crrϕθ crrrθ crrrϕ

cϕϕrr cϕϕϕϕ cϕϕθθ cϕϕϕθ cϕϕrθ cϕϕrϕ

cθθrr cθθϕϕ cθθθθ cθθϕθ cθθrθ cθθrϕ

cϕθrr cϕθϕϕ cϕθθθ cϕθϕθ cϕθrθ cϕθrϕ

crθrr crθϕϕ crθθθ crθϕθ crθrθ crθrϕ

crϕrr crϕϕϕ crϕθθ crϕϕθ crϕrθ crϕrϕ

1CCCCCA

=

0BBBBB@
λ + 2µ λ + C λ + C 0 0 0
λ + C λ + 2µ + A λ + A 0 0 0
λ + C λ + A λ + 2µ + A 0 0 0

0 0 0 µ 0 0
0 0 0 0 µ + B 0
0 0 0 0 0 µ + B

1CCCCCA (8)
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Love (1892) proposed an alternative parametrisation0BBBBB@
crrrr crrϕϕ crrθθ crrϕθ crrrθ crrrϕ

cϕϕrr cϕϕϕϕ cϕϕθθ cϕϕϕθ cϕϕrθ cϕϕrϕ

cθθrr cθθϕϕ cθθθθ cθθϕθ cθθrθ cθθrϕ

cϕθrr cϕθϕϕ cϕθθθ cϕθϕθ cϕθrθ cϕθrϕ

crθrr crθϕϕ crθθθ crθϕθ crθrθ crθrϕ

crϕrr crϕϕϕ crϕθθ crϕϕθ crϕrθ crϕrϕ

1CCCCCA

=

0BBBBB@
CL FL FL 0 0 0
FL AL AL − 2NL 0 0 0
FL AL − 2NL AL 0 0 0
0 0 0 NL 0 0
0 0 0 0 LL 0
0 0 0 0 0 LL

1CCCCCA (9)

We chose to use the parametrisation from equation (8) because it easily allows us to model
isotropy by simply setting A = B = C = 0. Remember, that all components of the elastic
tensor are functions of t and x.

1.2.1 SH and SV waves in spherical coordinates

SH and SV waves are horizontally propagating S waves with horizontal and vertical polarisa-
tion, respectively. In anisotropic media these two types of waves exhibit di�erent wave speeds.
This phenomenon is observed in the Earth's upper mantle.
An exact derivation of the SH and SV wave speeds in spherical coordinates is di�cult, but
some approximations allow us to obtain simple and useful formulas. We �rst restrict our
attention to a small volume around (r, φ, θ) = (r0, 0, π/2). Under this assumption we �nd the
approximations

∂φ ≈ r0∂y , ∂θ ≈ −r0∂z , ∂r ≈ ∂x . (10)

This allows us to simplify the relations (6a) to (6c) and (7a) to (7f), given that r0 is very large
compared to the maximum stress values:

(∇ · σ)r ≈ ∂rr +
1

r0
(∂φσφr + ∂θσθr) , (11a)

(∇ · σ)φ ≈ ∂rσφr +
1

r0
(∂φσφφ + ∂θσθφ) , (11b)

(∇ · σ)θ ≈ ∂rσrθ +
1

r0
(∂φσφθ + ∂θσθθ) , (11c)

εrr ≈ ∂rur , (11d)

εrφ ≈
1

2

„
∂ruφ +

1

r0
∂φur

«
, (11e)

εrθ ≈
1

2

„
∂ruθ +

1

r0
∂θur

«
, (11f)

εφφ ≈
1

r0
∂φuφ , (11g)

εφθ ≈
1

2r0
(∂φuφ + ∂θuφ) , (11h)

εθθ ≈
1

r0
∂θuθ . (11i)

In order to derive expressions for the propagation speeds of pure SH and SV waves, we have
to �nd plane wave solutions of equations (11a) to (11h). Strictly speaking this contradicts
the assumption that our Earth model is �nite and that we consider only a small volume of
it. However, we can expect the resulting formulas to be physically reasonable if the spatial
wavelength is small compared to the extensions of the small volume to which the wavefront
is con�ned.

SV waves (radial polarisation): For a horizontally travelling wave with purely radial
polarisation we have

uφ = uθ = 0 , ∂r = 0 , (12)
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and
εrr = εφφ = εφθ = εθθ = 0 . (13)

The non-zero strain components are

εrφ =
1

2r0
(∂φur) , εrθ =

1

2r0
(∂θur) . (14)

For better readability, we replaced the ≈ sign by the = sign in the above equations. Since we
are interested only in the radial component of the displacement �eld, it su�ces to consider
the scalar equation

0 = ρ∂2
t ur − (∇ · σ)r = ρ∂2

t ur −
1

r0
(∂φσrφ + ∂θσrθ) . (15)

Introducing the relations

σrφ = 2(µ + B)εrφ =
1

r0
(µ + B)∂φur , (16)

σrθ = 2(µ + B)εrθ =
1

r0
(µ + B)∂θur , (17)

into the wave equation (15) gives

0 = ρ∂2
t ur −

(µ + B)

r2
0

(∂2
φur + ∂2

θur) ≈ ρ∂2
t ur − (µ + B)(∂2

yur + ∂2
zur) . (18)

With ux ≈ ur it follows that the propagation speed of SV waves is

cSV =

s
µ + B

ρ
. (19)

SH waves (horizontal polarisation): We assume that the propagation direction is eθ and
that the polarisation direction is eφ. This translates to

ur = uθ = 0 , (20)

and
∂r = ∂φ = 0 . (21)

(Equivalently, one may choose eφ as propagation direction and eθ as polarisation direction.
The resulting formula for the SH wave speed is the same because the medium is anisotropic
with radial symmetry axis.) The only non-zero strain tensor component is

εφθ =
1

2r0
∂θuφ . (22)

Again, we wrote = instead of ≈. It is implicit, that these are approximate relations only. The
wave equation for the φ−component of the displacement �eld is

0 = ρ∂2
t uφ − (∇ · σ)φ = ρ∂2

t uφ −
1

r0
∂θσθφ . (23)

Substituting

σθφ = 2µεθφ =
µ

r0
∂θuφ (24)

into the wave equation (23) yields

0 = ρ∂2
t uφ −

µ

r0

2
∂2

θuφ ≈ ρ∂2
t − µ∂2

zuy . (25)

Hence, the SH wave speed is

cSH =

r
µ

ρ
. (26)
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1.2.2 PH and PV waves in spherical coordinates

In an analysis similar to the one for SH and SV waves, one may consider P waves travelling in
di�erent coordinate directions. Here, we shall give the label PH to plane P waves travelling in
horizontal direction, and the label PV to plane P waves travelling in radial direction. Again,
the obtained formulas are approximations that are valid under the assumption that were
discussed in the section on SH and SV waves.

PV waves: For a plane P wave travelling in radial direction we have

uφ = uθ = 0 , (27)

and
∂φ = ∂θ = 0 . (28)

Following exactly the same steps outlined in the previous section gives the propagation speed
of PV waves:

cPV =

s
λ + 2µ

ρ
. (29)

PH waves: Choosing eφ as propagation direction gives

ur = uθ = 0 , (30)

and
∂θ = ∂r = 0 . (31)

As the resulting wave speed we �nd

cPH =

s
λ + 2µ + A

ρ
. (32)

Interestingly, the velocities of SH, SV, PH and PV waves specify only two of the three addi-
tional elastic parameters necessary for anisotropy with radial symmetry axis, namely A and
B. Also radially propagating S waves do not allow us to �nd C, because they propagate with
the velocity

p
(µ + B)/ρ, just as SV waves. In fact, using plane waves, C can be determined

only from P waves that do not travel in exactly radial or horizontal directions.

1.3 Anelasticity
The particular implementation of anelasticity is largely motivated by technical convenience
and not so much by a deep understanding of seismic wave attenuation in the interior of the
Earth. Even though signi�cant progress has been made over the last years (e.g. Gung &
Romanowicz, 2004), the time dependence of the elastic tensor components is only weakly con-
strained. Experimental studies have been made with materials that are likely to be abundant
in the Earth's core and mantle, or with structural analogues (e.g. low-carbon iron alloys, Fo90
polycrystals, CaTiO3). (See Jackson, 2000, for an excellent summary.) It was found that they
can be reasonably represented by the Andrade model. If the stress is a Heaviside function,
i.e., σ(t) = H(t), then the strain response of the Andrade model is

J(t) = Ju + βtn + t/η . (33)

The function J(t) is called strain relaxation function. Unfortunately, the Andrade model is
hard to implement numerically. A more intuitive model that can be represented by a simple
superposition of springs and dashpots is the Burgers model (e.g. Jackson, 2000). Its strain
relaxation function is given by

J(t) = Ju + δJ
“
1− e−t/τ

”
+

t

η
, (34)

For frequencies that are below 10 Hz, the Burgers model can �t the data as well as the Andrade
model. If the period T of the elastic waves is signi�cantly smaller than ηδJ , equation (34)
may be simpli�ed to

J(t) = Ju + δJ
“
1− e−t/τ

”
. (35)

This is the strain relaxation function of a standard linear solid (e.g. Dahlen & Tromp, 1998).
The above mentioned experiments usually considered a single mineral phase such as for ex-
ample CaTiO3. Since the Earth's mantle is composed of several mineral phases, we choose a
superposition of standard linear solids. Our analysis roughly follows Robertsson et al. (1994).
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It will be rather detailed in order to render the Fortran source code more easily understand-
able.
Assume that σ, c and ε are representative of some particular components of σ,C and ε. Then
a scalar version of the stress-strain relation (3) is given by

∂tσ(t) = (ċ ∗ ε̇)(t) =

∞Z
−∞

ċ(t− t′)ε̇(t′) dt′ . (36)

The spatial dependence has been omitted for brevity. As already discussed, we choose the
stress relaxation function c to be that of a superposition of N standard linear solids, i.e.,

c(t) := cr

241−
1

N

NX
p=1

„
1−

τεp

τσp

«
e−t/τσp

35 H(t) , (37)

where τεp and τσp are the strain and stress relaxation times of the pth standard linear solid,
respectively. The symbol H denotes the Heaviside function and cr is the relaxed modulus.
Equation (37) is still very general and di�erent sets of relaxation times can give almost the
same c(t). Therefore, following the τ -method introduced by Blanch et al. (1995) we determine
the τεp by de�ning a dimensionless variable τ through

τ :=
τεp

τσp
− 1 . (38)

This gives

c(t) = cr

241 +
τ

N

NX
p=1

e−t/τσp

35 H(t) . (39)

Di�erentiating (39) and introducing the result into (36) yields

∂tσ(t) = cr(1 + τ) ε̇(t) +
NX

p=1

Mp , (40)

where the memory variables Mp are de�ned by

Mp := −
τcr

Nτσp

∞Z
−∞

e−(t−t′)/τσp H(t− t′) ε̇(t′) dt′ . (41)

The di�erentiation of (41) with respect to time yields a set of simple �rst-order di�erential
equations for the memory variables:

∂tMp = −
τcr

Nτσp
ε̇−

1

τσp
Mp . (42)

Hence, anelasticity can be modelled by solving di�erential equations for the memory variables
simultaneously with the momentum equation (1) and the stress-strain relation (3, 40).
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Based on the previous analysis we can now give an explicit version of equation (3):

∂tσrr = λr(1 + τλ) (ε̇rr + ε̇ϕϕ + ε̇θθ) + 2µr(1 + τµ) ε̇rr + C (ε̇ϕϕ + ε̇θθ)

+
NX

p=1

“
Lrr

p + Lϕϕ
p + Lθθ

p + 2Mrr
p

”
, (43a)

∂tσϕϕ = λr(1 + τλ) (ε̇rr + ε̇ϕϕ + ε̇θθ) + 2µr(1 + τµ) ε̇ϕϕ + C ε̇rr + A (ε̇ϕϕ + ε̇θθ)

+
NX

p=1

“
Lrr

p + Lϕϕ
p + Lθθ

p + 2Mϕϕ
p

”
, (43b)

∂tσθθ = λr(1 + τλ) (ε̇rr + ε̇ϕϕ + ε̇θθ) + 2µr(1 + τµ) ε̇θθ + C ε̇rr + A (ε̇ϕϕ + ε̇θθ)

+
NX

p=1

“
Lrr

p + Lϕϕ
p + Lθθ

p + 2Mθθ
p

”
, (43c)

∂tσrϕ = 2µr(1 + τµ) ε̇rϕ + 2Bε̇rϕ + 2
NX

p=1

Mrϕ
p , (43d)

∂tσrθ = 2µr(1 + τµ) ε̇rθ + 2Bε̇rθ + 2
NX

p=1

Mrθ
p , (43e)

∂tσϕθ = 2µr(1 + τµ) ε̇ϕθ + 2
NX

p=1

Mϕθ
p . (43f)

The time evolution of the memory variables is determined through the following set of di�er-
ential equations:

∂tM
ij
p = −

µrτµ

Nτµ
σp

ε̇ij −
1

τσ
µ
σp

M ij
p , (44a)

∂tL
ij
p = −

λrτλ

Nτλ
σp

ε̇ij −
1

τλ
σp

Lij
p . (44b)

Note that we do not implement anelasticity for the anisotropy parameters A, B and C.

In seismology there has traditionally been more emphasis on the quality factor Q than on
particular stress or strain relaxation functions. The exact de�nition of Q is based on the
de�nition of the complex modulus:

c(ν) := i ν

Z ∞

0
c(t) e−iνt dt , (45)

with ν := ω + iγ. Then

Q(ω) :=
Re(c(ω))

Im(c(ω))
. (46)

If Im(c(ω)) � Re(c(ω)), Q can be interpreted in terms of the maximum elastic energy Emax

and the energy that is dissipated per cycle, Ediss:

Ediss/Emax = 4πQ−1 . (47)

For our stress relaxation function de�ned in equation (39) we �nd

Q(ω) =

PN
p=1

„
1 +

ω2τ2
σpτ

1+ω2τ2
σp

«
PN

p=1

„
ωτσpτ

1+ω2τ2
σp

« . (48)

An early analysis of seismic wave attenuation was carried out by Born (1941). It follows from
his laboratory studies that Q is frequency independent in dry sedimentary rocks, meaning
that the elastic energy loss can be attributed to solid friction. Born also found that a strong
frequency dependence of Q results from the inclusion of even small amounts of water and
he noted that the extrapolation of the solid friction behaviour to greater depths is "admit-
tedly speculation." Still, a constant Q has become the standard in seismology. Blanch et al.
(1995) gave a simple algorithm that allows to construct a constant Q from equation (48).
In recent years it has become more and more evident that Q in the Earth's mantle is not
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constant, but proportional to ωα, with α ranging between 0.2 and 0.4 (e.g. Romanowicz &
Durek, 2000; Cheng & Kennett, 2002; Shito et al., 2004). We therefore included a Matlab
�le called relaxation_times.m in the fd3s package, which determines the parameters τ and
τσp in equation (48) for an arbitrary Q(ω). The algorithm minimises the L2 distance be-
tween equation (48) and the prescribed frequency dependence of Q with a simple Simulated
Annealing technique (Kirkpatrick et al, 1983).
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2 Discretisation

2.1 Discretisation in space
In order to solve equations (1, 6a-6c, 7a-7f), they have to be discretised in both time and
space. The principal ideas of the scheme that we adopted can be found in Virieux (1984). We
choose a constant grid spacing, with increments ∆r, ∆ϕ and ∆θ in the r, ϕ, and θ directions,
respectively. The continuous �elds are replaced by their discrete versions - indicated by a bar
- as follows:

εnn(r, ϕ, θ) → ε̄nn(i, j, k) = ε̄nn|ijk , (49a)

εrϕ(r −∆r/2, ϕ + ∆ϕ/2, θ) → ε̄rϕ(i, j, k) = ε̄rϕ|ijk , (49b)

εrθ(r −∆r/2, ϕ, θ + ∆θ/2) → ε̄rθ(i, j, k) = ε̄rθ|ijk , (49c)

εϕθ(r, ϕ + ∆ϕ/2, θ + ∆θ/2) → ε̄ϕθ(i, j, k) = ε̄ϕθ|ijk , (49d)

σnn(r, ϕ, θ) → σ̄nn(i, j, k) = σ̄nn|ijk , (49e)

σrϕ(r −∆r/2, ϕ + ∆ϕ/2, θ) → σ̄rϕ(i, j, k) = σ̄rϕ|ijk , (49f)

σrθ(r −∆r/2, ϕ, θ + ∆θ/2) → σ̄rθ(i, j, k) = σ̄rθ|ijk , (49g)

σϕθ(r, ϕ + ∆ϕ/2, θ + ∆θ/2) → σ̄ϕθ(i, j, k) = σ̄ϕθ|ijk , (49h)

vr(r −∆r/2, ϕ, θ) → v̄r(i, j, k) = v̄ijk , (49i)

vϕ(r, ϕ + ∆ϕ/2, θ) → v̄ϕ(i, j, k) = v̄ϕ|ijk , (49j)

vθ(r, ϕ, θ + ∆θ/2) → v̄θ(i, j, k) = v̄θ|ijk . (49k)

The spatial derivatives are approximated by fourth-order �nite di�erences. For example

∂ϕσϕϕ(r, ϕ + ∆ϕ/2, θ) →
9

8∆ϕ
[σrr(r, ϕ + ∆ϕ, θ)− σrr(r, ϕ, θ)]

−
1

24∆ϕ
[σrr(r, ϕ + 2∆ϕ, θ)− σrr(r, ϕ−∆ϕ, θ)]

→
9

8∆ϕ
[σ̄rr(i, j + 1, k)− σ̄rr(i, j, k)]

−
1

24∆ϕ
[σ̄rr(i, j + 2, k)− σ̄rr(i, j − 1, k)] =: ∂ϕσ̄ϕϕ(i, j, k) . (50)

Evidently, the discrete �elds and their respective discrete derivatives are now located at dif-
ferent points, even though they have the same index (�gure (2)). This has the advantage
that the grid spacing is e�ectively reduced and that the method converges faster. However,
equations (6a) to (7f) occasionally require knowledge of a �eld and its derivative at the same
location, and therefore interpolation becomes necessary. Note that this inconsistency of the
staggered grid does not exist in cartesian coordinates (e.g. Igel et al., 1995). Interpolations
are also necessary for the elastic parameters. They are usually de�ned at (r, ϕ, θ), i.e., at the
same locations as the diagonal stress and strain rate components.

2.2 Discretisation in time
The discretisation in time is implemented as a second-order �nite-di�erence approximation.
This creates an explicit scheme that allows us to step forward in time without solving a large
matrix equation. We start with a forward step of the velocity �eld:

v̄(t + ∆t) = v̄(t) + ∆t ∂tv̄(t + ∆t/2)

= v̄(t) + ∆t

»
1

ρ
∇ · σ̄(t + ∆t/2) +

1

ρ
f̄(t + ∆t/2)

–
. (51)

The spatial dependence of the �eld variables has been omitted for brevity. A discrete version
of ∇·σ can be obtained from equations (6a) to (6c). Once v̄(t+∆t) has been computed from
equation (51), the discretised strain rate tensor ˙̄ε at the time t + ∆t can be calculated from
equations (7a) to (7f). It therefore becomes possible to propagate the stress �eld forward in
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Figure 2: Staggered grid scheme: Locations of the �eld variables with multi-index (i, j, k).
Note that the index i increases with decreasing radius and increasing depth.

time:

σ̄(t + 3∆t/2) = σ̄(t + ∆t/2) + ∆t ∂tσ̄(t + ∆t)

= σ̄(t + ∆t/2) + ∆t

24 ∞Z
−∞

Ċ(t′) : ˙̄ε(t + ∆t− t′) dt′

35 . (52)

The convolution on the right-hand side of (52) is explicitly given by the equations (43a) to

(43f). It remains to consider the memory variables Lij
p and M ij

p . Just as ∂tσ̄ and ˙̄ε they

have to be known at times t + ∆t. Since the di�erential equations for Lij
p and M ij

p involve
both the memory variables themselves and their time derivatives, it is not possible to use a
second-order approximation without saving all memory variables and the strain rate tensor
for at least one previous time step. Since this would substantially increase both the memory
requirements and the computing time, we adopt a simple �rst order scheme for the memory
variables:

M̄ ij
p (t + ∆t) = M̄ ij

p (t) + ∆t ∂tM̄
ij
p (t)

= M̄ ij
p (t)−∆t

"
µrτµ

Nτµ
σp

˙̄εij(t) +
1

τσ
µ
σp

M̄ ij
p (t)

#
, (53)

L̄ij
p (t + ∆t) = L̄ij

p (t) + ∆t ∂tL̄
ij
p (t)

= L̄ij
p (t)−∆t

24 λrτλ

Nτλ
σp

˙̄εij(t) +
1

τσλ
σp

L̄ij
p (t)

35 , (54)

In order to initialise the time stepping, the �elds v̄(0) and σ̄(∆t/2) must be known. Since
there is no equation that allows us to compute σ̄(∆t/2), we simply set σ̄(∆t/2) equal to the
true initial value σ̄(0).
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2.3 The free surface
The numerical treatment of the free surface requires special attention because it does not
follow directly from the discretisation in the interior of the spherical section. In this sense,
the �nite di�erence approach is not holistic.

The staggered grid scheme (�gure 2) implies that the computations of the discrete versions of
∇v and ∇ · σ require grid points above the free surface:

σ̄rθ|−1jk , σ̄rθ|−2jk → ∂rσ̄rθ|0jk , (55a)

σ̄rϕ|−1jk , σ̄rϕ|−2jk → ∂rσ̄rϕ|0jk , (55b)

σ̄rr|−1jk → ∂rσ̄rr|0jk , (55c)

v̄θ|−1jk → ∂r v̄θ|0jk , (55d)

v̄ϕ|−1jk → ∂r v̄ϕ|0jk , (55e)

v̄r|−1jk , v̄r|−2jk → ∂r v̄r|0jk . (55f)

The values above the free surface are initially unavailable. Therefore, they have to be calcu-
lated explicitly from the free surface boundary conditions

σrr|r=R = 0 , (56a)

σrϕ|r=R = 0 , (56b)

σrθ|r=R = 0 . (56c)

Equation (56a) can be discretised directly because σ̄rr|0jk is de�ned at the surface:

σ̄rr|0jk = 0 . (57a)

The value of σ̄rr one grid point above the free surface may be obtained via an anti-symmetry
relation:

σ̄rr|−1jk = −σ̄rr|1jk . (57b)

The discrete stress tensor components σ̄rθ and σ̄rϕ are not de�ned directly at the surface.
We therefore treat them with similar anti-symmetry relations that force at least the linearly
interpolated solutions to zero:

σ̄rθ|−1jk = −σ̄rθ|0jk , σ̄rθ|−2jk = −σ̄rθ|1jk , (57c)

σ̄rϕ|−1jk = −σ̄rϕ|0jk , σ̄rϕ|−2jk = −σ̄rϕ|1jk . (57d)

The values of v̄ above the surface can be obtained through the stress strain relation. Its
continuous version is

∂tσrr = (λ̃ + 2µ̃) ∂rvr +
(λ̃ + C)

r

»
1

sin θ
∂ϕvϕ + 2vr + vθ cot θ + ∂θvθ

–

+
NX

p=1

“
Lrr

p + Lϕϕ
p + Lθθ

p + 2Mrr
p

”
(58a)

∂tσrϕ = (µ̃ + B)

»
∂rvϕ +

1

r sin θ
∂ϕvr −

1

r
vϕ

–
+ 2

NX
p=1

Mrϕ
p , (58b)

∂tσrθ = (µ̃ + B)

»
∂rvθ +

1

r
∂θvr −

1

r
vθ

–
+ 2

NX
p=1

Mrθ
p . (58c)

Equation (56a) implies

0 = (λ̃ + 2µ̃) ∂rvr

˛̨̨
r=R

+
(λ̃ + C)

r

»
1

sin θ
∂ϕvϕ + 2vr + vθ cot θ + ∂θvθ

–˛̨̨̨
˛
r=R

+
NX

p=1

“
Lrr

p + Lϕϕ
p + Lθθ

p + 2Mrr
p

”˛̨̨̨
˛̨
r=R

. (59)

This equation can not be discretised directly, because v̄r and v̄θ are not de�ned at the ad-
equate grid point. Therefore, we use the horizontally interpolated values of v̄θ, denoted by
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¯̄vθ. Moreover, we replace v̄r|0jk by the vertically interpolated values 1
2

`
v̄r|0jk + v̄r|−1jk

´
.

Introducing these approximations into (59) yields

0 =(λ̃ + 2µ̃) ∂r v̄r|0jk +
(λ̃ + C)

r

»
1

sin θ
∂ϕv̄ϕ + vr + ∂θ v̄θ + ¯̄vθ cot θ

–˛̨̨̨
˛
0jk

+
(λ̃ + C)

r
v̄r

˛̨̨̨
˛
−1jk

+
NX

p=1

“
L̄rr

p + L̄ϕϕ
p + L̄θθ

p + 2M̄rr
p

”˛̨̨̨
˛̨
0jk

(60)

In order to obtain v̄r|−1jk, we set

∂r v̄r|0jk
..
=

1

∆r

ˆ
v̄r|−1jk − v̄r|0jk

˜
. (61)

This second-order approximation is obviously motivated by pure mathematical convenience.
Even though it is practical, the order of the �nite di�erence scheme is reduced to 2, at least at
the surface. Regarding equation (61), remember that the radial index increases with decreasing
radius. Finally, introducing (61) into (60) gives

v̄r|−1jk =
R2

R1
v̄r|0jk +

R3

R1

»
1

sin θ
∂ϕv̄ϕ + v̄r + ∂θ v̄θ + ¯̄vθ cot θ

–˛̨̨̨
0jk

−
1

R1

NX
p=1

“
L̄rr

p + L̄ϕϕ
p + L̄θθ

p + 2M̄rr
p

”˛̨̨̨
˛̨
0jk

, (62a)

with

R1 :=

"
(λ̃ + 2µ̃)

∆r
+

(λ̃ + C)

r

#˛̨̨̨
˛
−1jk

, (62b)

R2 :=
(λ̃ + 2µ̃

∆r

˛̨̨̨
˛
0jk

, (62c)

R3 := −
(λ̃− C)

r

˛̨̨̨
˛
0jk

. (62d)

Now that v̄r|−1jk has been found, we apply the anti-symmetry relations (57c) and (57d):

− (µ̃ + B)

»
∂r v̄ϕ +

1

r sin θ
∂ϕv̄r −

1

r
¯̄vϕ

–˛̨̨̨
0jk

− 2
NX

p=1

M̄rϕ
p

˛̨
0jk

= (µ̃ + B)

»
∂r v̄ϕ +

1

r sin θ
∂ϕv̄r −

1

r
¯̄vϕ

–˛̨̨̨
−1jk

+ 2
NX

p=1

M̄rϕ
p

˛̨
−1jk

, (63)

and

− (µ̃ + B)

»
∂r v̄θ +

1

r
∂θ v̄r −

1

r
¯̄vθ

–˛̨̨̨
0jk

− 2
NX

p=1

M̄rθ
p

˛̨̨
0jk

= (µ̃ + B)

»
∂r v̄θ +

1

r
∂θ v̄r −

1

r
¯̄vθ

–˛̨̨̨
−1jk

+ 2
NX

p=1

M̄rθ
p

˛̨̨
−1jk

(64)

Again, v̄ϕ and v̄θ had to be interpolated:

¯̄vϕ|−1jk :=
1

2
[v̄ϕ|−1jk + v̄ϕ|0jk] , (65a)

¯̄vϕ|0jk :=
1

2
[v̄ϕ|0jk + v̄ϕ|1jk] , (65b)

¯̄vθ|−1jk :=
1

2
[v̄θ|−1jk + v̄θ|0jk] , (65c)

¯̄vθ|0jk :=
1

2
[v̄θ|0jk + v̄θ|1jk] . (65d)
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Since the �nite di�erence scheme is already reduced to second order at the surface, we employ
the following approximations:

∂r v̄ϕ|−1jk
..
=

1

∆r

ˆ
v̄ϕ|−1jk − v̄ϕ|0jk

˜
, (66a)

∂r v̄ϕ|0jk
..
=

1

∆r

ˆ
v̄ϕ|0jk − v̄ϕ|1jk

˜
, (66b)

∂r v̄θ|−1jk
..
=

1

∆r

ˆ
v̄θ|−1jk − v̄θ|0jk

˜
, (66c)

∂r v̄θ|0jk
..
=

1

∆r

ˆ
v̄θ|0jk − v̄θ|1jk

˜
. (66d)

Combining equations (63) to (66d), gives - after some tedious algebraic manipulations - the
following expressions for v̄ϕ|−1jk and v̄θ|1−jk.

v̄ϕ|−1jk =
1

A1

„
1

r
v̄ϕ −

1

sin θ
∂ϕv̄r

«˛̨̨̨
0jk

−
1

A1

„
1

r sin θ
∂ϕv̄r

«˛̨̨̨
−1jk

+
A2

A1
v̄ϕ|1jk −

4

A1(µ̃ + B)

NX
p=1

Mrϕ
p

˛̨
0jk

, (67)

v̄θ|−1jk =
1

A1

„
1

r
v̄θ −

1

r
∂θ v̄r

«˛̨̨̨
0jk

−
1

A1

„
1

r
∂θ v̄r

«˛̨̨̨
−1jk

+
A2

A1
v̄θ|1jk −

4

A1(µ̃ + B)

NX
p=1

Mrθ
p

˛̨̨
0jk

. (68)

The scalars A1 and A2 are de�ned as

A1 :=

„
1

∆r
−

1

2r

«˛̨̨̨
−1jk

=

„
1

∆r
−

1

2(R + ∆r)

«
, (69a)

A2 :=

„
1

∆r
+

1

2r

«˛̨̨̨
1jk

=

„
1

∆r
+

1

2(R−∆r)

«
. (69b)

Note that for deriving equations (67) and (68) we have assumed that M̄rϕ
p |−1jk and M̄rθ

p |−1jk

are approximately equal to M̄rϕ
p |0jk and M̄rθ

p |0jk, respectively. Not doing so would require us
to �nd and solve equations for the memory variables above the surface. This however seems
to be an unnecessary e�ort.

2.4 Absorbing boundaries
fd3s restricts the spatial domain in which the discretised equations of motion are solved to a
spherical section. From a purely mathematical point of view, this domain has to exclude the
centre of the sphere (r = 0) in order to avoid singularities in equations (6a) to (6c) and (7a) to
(7f). As we shall see later, stability requirements force us to exclude the polar regions as well,
because the volume of a grid cell tends to zero as θ approaches 0 or π. Another argument for
the limitation of the spatial domain is of course the minimisation of the computational costs.
The introduction of unphysical boundaries automatically results in unphysical re�ections,
unless they are suppressed by absorbing boundary conditions. An e�cient implementation of
absorbing boundary conditions has been proposed by Cerjan et al. (1985): After each time
step the discrete �elds v̄ and σ̄ near the boundaries are multiplied by a Gaussian damping
function de�ned as

G(i) = exp

»
−

„
N − i

α

«–
, (70)

where N is the width of the damping region in grid points and i is the distance to the boundary.
Outside the damping region, i.e., for i > N , all �elds remain unchanged. Nissen-Meyer (2001)
found that N = 40 and α = 3N is su�cient to eliminate unphysical re�ections.
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3 Implementation and technical details

The �nite di�erence scheme described so far, has been implemented in the form of a fortran90
program called fd3s. Some of the technical details concerning this implementation will be
outlined in this section. For greater generality, the focus will be on the parallel version of fd3s.
Running the program on one single processor only is straightforward and merely requires the
speci�cation of three simple input parameters.

3.1 Directory structure
All necessary �les are contained in the directory FD3S and its subdirectories DATA, MODELS and
MATLAB.

In addition to the source code which will be described later, the directory FD3S contains the
Par �le including the most important input parameters such as the model size, source location
and source type.
The directory MATLAB contains a collection of useful and simple Matlab tools that help to
generate input and visualise the output. Detailed explanations are provided in the headers of
the di�erent M-�les and will therefore not be repeated here.
All input �les de�ning the physical model can be found in the directory MODELS. Among
them are the distributions of inverse density and elastic parameters, as well as the initial
displacement and stress �elds.
DATA comprises three subdirectories named COORDINATES, LOGFILES and OUTPUT. During the
initialisation phase each processor writes the coordinates of its part of the entire model into
COORDINATES. Similarly, log�les for each processor are written to LOGFILES. The generated
seismograms and wave�eld snapshots can be found in OUTPUT.

3.2 Source code
The fd3s source code is composed of 8 fortran90 �les that have to be compiled together. A
brief description of their contents will be given in the following paragraphs.

1. fd3s_main.f90 is the principal source �le. It comprises calls to subroutines that ini-
tialise fd3s, read the input �les and write the output. Moreover, fd3s_main.f90 in-
cludes the time stepping loop.

2. fd3s_modules.f90 includes two fortran90 modules called parameters and variables.
Since dynamic memory allocation is still problematic in fortran90, maximum �eld sizes
are speci�ed in parameters. Especially for the purpose of e�cient parallel computing
it is important to keep the parameters nx, ny and nz as small as possible. They give
the maximum �elds sizes for each processor in θ, φ and r direction, respectively. Note
that these are not the maximum �eld sizes for the entire model but for the di�erent
parts of the model assigned to their respective processes.
Global variables are declared in variables. Even though their meaning is given in the
form of comments, the most important ones will be listed here:

*x = ∗θ , *y = ∗φ , *z = ∗r ,

w11 = vθ , w12 = vϕ , w13 = vr ,

w14 = σθθ , w15 = σϕϕ , w16 = σrr ,

w17 = σθϕ , w18 = σθr , w19 = σϕr .

3. fd3s_init.f90 initialises the coordinate axes for the di�erent processors as well as
the parameters necessary for the linear receiver interpolation. In addition to this, the
two-dimensional �elds necessary for the free surface implementation are initialised in
fd3s_init.f90.

4. fd3s_input.f90 �rst reads input parameters from the �les Par and boxfile and dis-
tributes them among the di�erent processes. (The boxfile will be explained in the sub-
section on parallelisation.) Subsequently, each process reads the following input from
the directory MODELS: distributions of inverse density, elastic parameters and relaxation
times, initial velocity and stress distributions. The initial values become unnecessary
and are automatically assumed to be zero, if the parameter is_homogeneous in the Par
�le is set to 1.
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5. fd3s_evolution.f90 performs one forward time step of the stress and velocity �elds.
The subroutine fd3s_evolution starts with the communication of stress �elds between
di�erent processes. This will later be described in detail. After all processes received
the relevant stress �elds, the stress divergence can be computed, which then allows to
extrapolate the velocity �eld. The updated velocity �eld is then also communicated
between the processors. This is followed by the computation of the strain rate tensor
and the application of Hooke's relation. Finally, the stress �eld is updated. Depending
on whether the medium is dissipative or not, fd3s_evolution also performs the time
stepping of the memory variables.
The subroutine fs_graves, also contained in fd3s_evolution.f90, is responsible for
the computation of the velocity values above the surface, which are necessary for the
implementation of the free surface. Another subroutine in fd3s_evolution.f90, called
pder2, computes spatial derivatives of two-dimensional �elds. This is also used for the
free surface implementation.

6. fd3s_oper.f90 contains the subroutines inter and pder, used for spatial interpolation
and di�erentiation, respectively.

7. fd3s_comm_tap.f90 includes the subroutine comm_tap_v which is responsible for the
exchange of velocity �elds between the boundary regions of di�erent processors and for
the implementation of the absorbing boundaries. The subroutine comm_tap_s performs
exactly the same tasks for the stress �elds. Both subroutines are essentially the same.
Depending on the rank of a process, the velocity and stress �elds in the boundary
regions of the process' part of the model are either sent to other processes or damped.

8. fd3s_output.f90 is composed of the subroutines fd3s_output and record_seismograms.
After each time step, record_seismograms writes the new velocity values at the receiver
locations into an array which can be written to a �le using fd3s_output. In addition to
this, fd3s_output also writes the velocity snapshots into �les located in the directory
OUTPUT.

3.3 Input �les
Most of the input �les are contained in the directory MODELS. There are four types of input,
namely initial values, material parameters, receiver locations and the source time function.

Initial values for the stress and velocity �elds can most conveniently be generated using
the fortran90 programme generate_initial, the source code of which is also included in
the directory MODELS. It can be modi�ed in order to produce any initial value distributions.
The �les written by generate_initial and needed by fd3s are v0_r∗, v0_phi∗, v0_theta∗,
s0_phi_phi∗, s0_phi_r∗, s0_theta_phi∗, s0_theta_r∗, s0_theta_theta∗ and s0_r_r∗. The
star ∗ indicates that the �le name is followed by the number of the process responsible for
the particular region of the model that corresponds to the respective input �le. Note that a
complete set of initial value distributions is needed for each process.
Material parameters such as distributions of density and elastic parameters can be pro-
duced with the fortan90 program generate_models. Standard output are the �les rhoinv∗,
lambda∗, mu∗, A∗, B∗ and C∗, which contain the parameters necessary to describe a non-
dissipative medium with radially symmetric anisotropy. Both programs generate_initial

and generate_models take input from the �le model_parameters which contains for example
the model dimensions and the number of processes in each coordinate direction. Note that
model_parameters should be consistent with the Par �le.
The source time function can most conveniently be generated with the M-�le make_stf

which can be found in the MATLAB directory. It writes a �le called stf into the MODELS direc-
tory, where fd3s expects it to be.
Receiver locations must be contained in the �le recfile, located in the main directory.
Since all receivers are assumed to be at the surface, recfile only includes the number of
receivers and then always one row with the θ coordinate followed by the ϕ coordinate of the
receiver. The maximum number of receivers should be set in the source �le fd3s_modules.

3.4 Parallelisation
The parallelisation of fd3s is achieved by subdividing the model space

M = [θmin, θmax]× [ϕmin, ϕmax]× [rmin, rmax] (71)
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into smaller subspaces

Mijk = [θi, θi+1]× [ϕj , ϕj+1]× [rk, rk+1] , (72)

each of which is treated by one processor. The multi-index (ijk) and the single index

n = (k − 1)nϕnθ + (j − 1)nθ + i (73)

are assigned to the di�erent subspaces following the scheme illustrated in �gure (3).

Figure 3: Organisation of the model subspaces Mijk. The single index n corresponding to
the multi-index (ijk) is given in parentheses.

The symbols nϕ and nθ denote the number of subspaces in ϕ and θ direction, respectively.
Both the multi-index and the single index are used in fd3s.
The subdivision of the model space M into subspaces Mijk can conveniently be achieved by
using the programme generate_models contained in the MODELS directory. All relevant pa-
rameters, such as the total model size and the number of processes in the di�erent directions,
are speci�ed in the �le model_parameters. Besides the �les containing the physical model
parameters and the initial values, model_parameters also generates a �le named boxfile. It
contains the dimensions of the di�erent subspaces as well as their multi and single indeces.
boxfile is also a necessary input for fd3s. It is important to make sure that the Par �le and
boxfile are consistent, meaning that they should give the same model size in all directions.

For the e�ectiveness of fd3s it is crucial that the maximum subspace size speci�ed in the
source �le fd3s_modules.f90 is not signi�cantly larger than the maximum size of the sub-
spaces in boxfile.

Solving the discretised version of the elastic wave equation requires the computation of dis-
cretised derivatives. For this, the stress and displacement �elds at two neighboring points of
each grid point have to be known. Consequently, the two-point boundary regions of the stress
and displacement �elds have to be sent from one subspace to its neighbours. If there are no
neighbours, the stress and displacement �elds have to be tapered at the boundaries, as pre-
scribed by the implementation of the absorbing boundary condition. Those tasks are ful�lled
by the two subroutines included in the source �le fd3s_comm_tap.f90. For each coordinate
direction, the subroutines check for the presence of a neighbour. If the test is positive, the
boundaries of the stress and displacement �elds are sent to the neighbour. In the next step,
the boundaries of the stress and displacement �elds sent by that neighbour are received and
stored. If no neighbour is present, the �elds are tapered.

3.5 Output �les
The output in the form of wave�eld snapshots and seismograms is written into the directory
DATA/OUTPUT. Generally, each process produces its own output �les. Hence, there are three
�les containing seismograms for each processor. (One �le for each coordinate direction.) If
there are no receivers located in a speci�c subspace, then the seismogram �les are empty. The
wave�eld snapshots are generated for planes of constant r, ϕ and θ, respectively. Also this is
done for each subspace.
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4 Evaluation

4.1 Numerical body wave dispersion
Body waves in an entirely homogeneous and non-dissipative medium are not dispersive, i.e.,
their phase speeds do not depend on their frequency. The discretisation of the wave equation
however introduces numerical dispersion of body waves that has no physical origin. Since an
analytical evaluation of the numerical dissipation is di�cult, especially in spherical coordi-
nates, we will measure it directly using a technique similar to the one described in Dziewonski
et al. (1969) and Dziewonski et al. (1972). A detailed description of the procedure can be
found in Appendix A. It basically follows four steps:

1 Computation of the Fourier transform of the seismic signal u(t), in our case a radial
component velocity seismogram.

2 Multiplication of the transformed signal u(ω) by the Gaussian

g(ω) = exp

»
−α

(ω − ωn)2

ω2
n

–
. (74)

3 Computation of the inverse Fourier transform in order to obtain the �ltered signal
ū(ωn, t), which is generally complex.

4 The time tn where |ū(ωn, t)| attains its maximum, is equal to k′(ωn) x. The symbols
k′(ωn) and x denote the inverse group speed for the frequency ωn and the distance
between source and receiver, respectively.

It is important to note that this technique requires the wave number k to be linearisable about
the frequency ωn. Since we expect the numerical dispersion to be generally small, we assume
that this requirement is satis�ed. Therefore we can expect to obtain good estimates of the
frequency dependent traveltimes of body waves.

We shall study the simple and easily reproducible case of a homogeneous and isotropic medium.
The material parameters are µ = 8.00 · 1010 N·m−2, λ = 1.19 · 1011 N·m−2, ρ = 3543.25
kg·m−3, resulting in a P-wave speed of cp = 8873.63 m·s−1 and an S-wave speed of cs =
4751.64 m·s−1. A single force in radial direction is located at a depth of 600.00 km, and also
the receivers are at a depth of 600 km. This allows us to observe both direct and surface-
re�ected waves, and therefore to separate the numerical dispersion in the interior from the
numerical dispersion caused by the free surface which is implemented only correct to second
order in space. (The spatial derivatives in the interior of the medium are all correct to fourth
order.) The parameters of the numerical model are summarised in the next table. The

∆θ [◦] ∆ϕ [◦] ∆r [km] ∆t [s]
0.1 0.1 10.0 0.5

Table 1: Parameters of the numerical model. The spherical section is centred on the equator.

absolute e�ects of numerical dispersion depend very much on the number of grid points per
wavelength. We therefore study two cases with distinct source time functions, both of the
form

f(t) = exp

»
−

(t− tp)2

t2s

–
(75)

but with di�erent parameters ts and tp. See the following table for details. Both the derivative
of the source time functions and their spectra are shown in �gure (4).

Clearly, this choice of the source time function is to a certain extent arbitrary. Choosing a
di�erent function will result in di�erent absolute discretisation errors. Therefore, the results
obtained in this section are not very general. Nevertheless, they allow us to infer the order of
magnitude of the numerical body wave dispersion.
Since the half-width ∆ω = 2π ∆ν of the �lter (74) greatly in�uences the dispersion measure-
ments, we analysed the cases of ∆ν1 = 5 mHz, ∆ν2 = 10 mHz and ∆ν3 = 20 mHz. Those
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tp [s] ts [s] νdominant [Hz] P-wave λdominant [km] S-wave λdominant [km]
20.0 7.5 0.03 295 158
40.0 11.3 0.02 493 238

Table 2: Wavelet parameters tp and ts together with the respective dominant frequencies
and wavelengths of the velocity �eld.

Figure 4: Left: Time derivative of the source time functions. The shapes of these functions
will be reproduced in the velocity seismograms. (red: tp = 20.0 s, ts = 7.5 s; black: tp = 40.0
s, ts = 11.3 s) Right: Spectra of the functions on the left. The dominant frequencies of 0.02
Hz and 0.03 Hz, respectively, are indicated by vertical dashed lines.

seem to be reasonable values because the dominant frequencies are 20 mHz and 30 mHz, re-
spectively. Choosing ∆ν large, results in a poor frequency localisation and in a precise time
localisation. The opposite is true for small values of ∆ν, where the determination of the
amplitude maximum of the �ltered signal becomes unstable.

In the case of a dominant frequency of 30 mHz (ts = 2.7 s, tp = 20.0 s), we observe that
the arrival times of the direct P-wave di�er by 2.0 per cent, given that the �lter width is
∆ν = 10 mHz. (See �gure (5).) This translates to wave speed variations of 2.3 per cent.
The traveltime variations of the surface-re�ected pP arrival amount to 4.0 per cent. Since the
travelled distance of the pP phase is almost twice as long as that of the P phase, the wave
speed variations are also on the order of 2 per cent. From this one may conclude that the
relatively inaccurate treatment of the free surface does not have a major e�ect.

Since the spatial wavelength of S waves is shorter than the one of P waves, the S wave
dispersion is generally larger, as indicated by �gure (6). For the direct S phase the arrival
times di�er by approximately 5 in a frequency range from 10.0 mHz to 60.0 mHz. This
translates to group speed variations of slightly less than 5 per cent. Similar values for the
group speed variations are found for the surface re�ected sS phase. This again suggests that
the relatively inaccurate free-surface implementation does not signi�cantly degrade the quality
of the numerical solution.

In the case of a dominant frequency of 20 mHz, the relevant frequency band is narrower
than for a dominant frequency of 30 mHz. This results in an apparently reduced numerical
dispersion (see �gure (7)). Quantitatively however, the arrival times in the reduced band from
15 mHz to 45 mHz di�er by the same amount as in the case of a dominant frequency of 30
mHz. This implies that the e�ect of numerical dispersion can most e�ectively be reduced by
propagating waves that are as monochromatic as possible, and to correct then for the wave
speed discrepancy.
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Figure 5: Left: Frequency-dependent arrival times of the direct P wave with a dominant
frequency of 30 mHz for di�erent �lter widths ∆ν. The ray-theoretical arrival time of 330.81
s is indicated by a dashed line. Right: Frequency-dependent arrival times of the surface-
re�ected pP phase. The ray-theoretical arrival time is 387.26 s.

Figure 6: Left: Frequency-dependent arrival times of the direct S wave with a dominant
frequency of 30 mHz for di�erent �lter widths ∆ν. The ray-theoretical arrival time of 617.79
s is indicated by a dashed line. Right: Frequency-dependent arrival times of the surface-
re�ected sS phase. The ray-theoretical arrival time is 723.20 s.

Figure 7: Left: Frequency-dependent arrival times of the direct P wave with a dominant
frequency of 20 mHz for di�erent �lter widths ∆ν. The ray-theoretical arrival time of 330.81
s is indicated by a dashed line. Right: Frequency-dependent arrival times of the direct S
wave with a dominant frequency of 20 mHz for di�erent �lter widths ∆ν. The ray-theoretical
arrival time of 617.79 s is indicated by a dashed line.
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4.2 Elastic waves in the Preliminary Reference Earth Model
(PREM)

The accuracy of synthetically computed body wave traveltimes for realistic Earth models is
of particular importance. For several reasons body wave traveltimes are the most important
seismic information used for both source and structural inversion. Traveltimes depend linearly
on large-scale Earth structures and are robust with respect to erroneous receiver calibration
and orientation.
To evaluate the accuracy of traveltimes computed with fd3s we adopt the material parameters
provided by the Preliminary Reference Earth Model (PREM), proposed by Dziewonski &
Anderson (1981). We neglect both anisotropy and attenuation. In PREM anisotropy with
radial symmetry axis is con�ned to the upper 220 km. It therefore primarily a�ects surface
waves. Body waves recorded at epicentral distances travel almost vertically through the upper
220 km and therefore remain largely una�ected by anisotropy with radial symmetry axis.
A �rst qualitative check of the wave�eld is provided in �gure (8). It shows a wave�eld snapshot
in PREM, 3 : 30 min after the initiation of the source, which acted at a depth of 400 km. The
model extension is 60◦ in φ direction, 30◦ in θ direction and 2000 km in depth. The direct
S wave and its surface re�ection are clearly visible on the cut in φ direction. The direct P
wave can be observed only on the surface due to its small amplitude in deeper parts of the
model where the P wave speed increases rapidly. The most prominent feature of the wave�eld
snapshot are the surface waves which decay quickly with depth.

Figure 8: Snapshot of the velocity �eld amplitude ||v|| in PREM, 3 : 30 min after the source
initiation at a depth of 400 km. The image is dominated by the surface waves which decay
rapidly with depth. Also the direct S wave and its surface re�ection are clearly visible. Due
to its small amplitude, the direct P wave can be observed only on the surface.
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A more quantitative evaluation is illustrated in �gure (9), which shows a radial component
synthetic seismogram at an epicentral distance of 60◦. The dominant period is 30 s. Some
prominent arrivals appear during the �rst 20 minutes, among them P, PP, PPP, PcP, PcS.
Around 60◦ the direct S wave interferes with the PS phase, and also PPS should become
visible. Shortly after S one can expect ScS. However, due to the relatively long period, it is
only the S arrival which is clearly visible. The smaller PS, PPS and ScS arrivals can not be
distinguished.
The arrival times of P, PP, PPP, PcP, PcS and S are all within 1 s of the ray theoretical
arrival times for PREM. Given the di�culties in measuring the exact onset of a long-period
wave and the relatively long time increment of ∆t = 0.35 s, this error is small.

Figure 9: Synthetic radial component seismogram at an epicentral distance of 60◦. The
arrivals of some prominent phases such as P. PP, PPP. PcP. PcS and S are clearly visible.
Their traveltimes agree well with the ray-theoretical predictions.

At this point it is important to note that the correct localisation of discontinuities such as
the core-mantle boundary is of particular importance. A radial grid spacing that is too wide
can easily misplace discontinuities signi�cantly and therefore lead to inaccurate arrival times
of re�ected waves.
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A Appendix A - Dispersion measurements

In the following lines we will brie�y outline the technique used to measure numerical dispersion.
A similar procedure was developed by Dziewonski et al. (1969) and Dziewonski et al. (1972)
for the purpose of surface wave dispersion measurements.

The recording f(t) of a wave travelling through a dispersive medium may be represented as

f(t) =

∞Z
−∞

F (ω)e−ik(ω)xeiωt dt =

∞Z
−∞

|F (ω)|eiφ(ω)e−ik(ω)xeiωt dt =

∞Z
−∞

f(ω)eiωt dt . (76)

The spectrum F (ω) is usually unknown, but the spectrum f(ω) may be obtained through a
Fourier transform of the signal f(t). Instead of the signal itself, we shall consider the signal
�ltered with a Gaussian centered at the frequency ωn, i.e.,

fn(t) :=

∞Z
−∞

f(ω)e−α(ω−ω)2/ω2
neiωt dt . (77)

Under the assumption that |F (ω)|, φ(ω) and k(ω) can be reasonably linearized about the
frequency ωn, we �nd after a laborious but straightforward calculation that fn is given by

fn(t) = ωn

r
π

α

»
|F (ωn)| −

ωn√
α

b|F (ωn)|′
–

exp
ˆ
−ik̄(ωn)x + iωnt

˜
exp

»
−

ω2
n

4α

`
k̄′(ωn)x− t

´2
–

,

(78)
with

b :=
iωn

2
√

α
[k̄′(ωn)x− t] (79)

and
k̄(ω) := k(ω)− φ(ω)/x . (80)

The complex �ltered signal fn(t) attains it maximum at

t = tmax := k′(ωn)x− φ′(ωn) . (81)

If x is su�ciently large, one may directly obtain the inverse group velocity k′(ωn). Otherwise,
one has to correct for φ′(ωn).
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