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Software for Inference of Dynamic Ground Strains and Rotations and

Their Errors from Short Baseline Array Observations of Ground Motions

by Paul Spudich and Jon B. Fletcher

Abstract In two previous articles we presented a formulation for inferring the
strains and rotations of the ground beneath a seismic array having a finite footprint.
In this article we derive expressions for the error covariance matrices of the inferred
strains and rotations, and we present software for the calculation of ground strains,
rotations, and their variances from short baseline array ground-motion data.

Online Material: MATLAB scripts to calculate strain and rotation time series and
errors, given array measurements of ground motions.

Introduction

In Spudich et al. (1995) and Spudich and Fletcher
(2008) we presented a formulation for inferring the strains
and rotations of the ground beneath a seismic array having
a finite footprint. This formulation assumed linear elasticity
and infinitesimal rotations, and it assumed that the displace-
ment gradient tensor was spatially uniform beneath the ar-
ray. In this short note and associated electronic supplement
(ⒺMATLAB scripts to calculate strain and rotation time
series and errors, given array measurements of ground mo-
tions, are available in the electronic edition of BSSA) we pro-
vide software for performing the calculations prescribed by
that formulation, and we present some additional theory, im-
plemented in the software of Spudich et al. (1995) and Spu-
dich and Fletcher (2008) but not previously described, for
estimating the error covariance matrices of the various strains
and rotations. The provided software is designed for use with
MATLAB, which is a high-level language and interactive en-
vironment produced by The MathWorks™. Because the total
theory is distributed among this and two other articles, in this
article we adhere to the terminology and notation of our two
previously published articles as much as possible. We will
occasionally associate our terms with the more favored ter-
minology of Evans et al. (2009). Mathematical terms not de-
fined here are presented in our previous two articles.

Error Covariance Matrices and
Formal Error Estimates

Because the inferred strains and rotations are the result
of a least-squares fit of noisy translational ground-motion
data, we are obliged to estimate the errors in the inferred
quantities based on the estimated errors in the ground-motion
data. Because noise levels can vary from seismometer to

seismometer, this variation can be accommodated by for-
mulating the problem as one of weighted least squares,
as follows. Let vic be the variance (square of the standard
deviation) of the c � 1, 2, 3 component of the station
i � 0; 1;…; N ground displacement. (Note—throughout
this article we will invert ground displacements to infer
strains and rotations. Exactly the same formulation ap-
plied to ground velocities will yield strain rates and rota-
tion rates, etc.) Generalizing from Spudich et al. (1995),
here we assume the data noise covariance matrix is
Cu � diag� v01 v02 v03 v11 v12 …vN3

� ��. Here we use
the MATLAB bracket notation to denote a row vector.

Spudich and Fletcher (2008) noted that two different
types of digitizers having different noise levels were used
in the U.S. Geological Survey Parkfield seismic array
(UPSAR), and they adjusted their noise variances vic appro-
priately, yielding formal error estimates on their inferred
rotations. Examples include quoted standard deviations of
tilt (rotation around a horizontal axis) and torsion (rotation
around a vertical axis) in their figure 4. (Spudich et al., 1995
also used different noise variances for different digitizers but
neglected to mention this in their article.)

To get the covariance matrices of the various strains and
rotations we will make relentless use of the following prop-
erty. If vector b has covariance matrix Cb, and if a � Bb,
where B is some matrix, then the covariance matrix of a is

Ca � BCbB
T (1)

(Menke, 1984, from his equation 2.7). In our specific appli-
cation the solution vector ~p (defined in the next section) and
its covariance Cp will be used for a and Ca. For each quantity
of interest we will present the appropriate B matrix, apply
(1), and evaluate algebraically where easy. Note that standard
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deviations of the quantities of interest are the square roots of
the corresponding diagonal elements of the derived covari-
ance matrices.

Covariance of the Strain Tensor Elements

Recall that the free-surface boundary condition implies
that strain tensor elements ei3 � 0 for i � 1, 2. Thus, a
vector e made from the four independent nonzero elements
of the strain tensor satisfies e � �e11 e21 e22 e33 �T � Be ~p,
where the unknown displacement gradient vector ~p � �u1;1
u1;2 u1;3 u2;1 u2;2 u2;3�T is a column vector of the six inde-
pendent elements of the displacement gradient matrix, and
the missing three elements are constrained by the free-
surface boundary condition. We have then that

Be �
1

2

2 0 0 0 0 0

0 1 0 1 0 0

0 0 0 0 2 0

�2η 0 0 0 �2η 0

0
BB@

1
CCA;

where η � λ=�λ� 2μ�, and the covariance matrix of e is
Ce � BeCpB

T
e . The top four rows of Be result from

eij � �ui;j � uj;i�=2, and the final row results from the
free-surface boundary condition u3;3 � η�u1;1 � u2;2�.

Horizontal and Total Dilatation

Horizontal dilatation dh � Bdh ~p, where Bdh �
1 0 0 0 1 0

� �
. Therefore, the covariance matrix

(which is a scalar variance in this case) of dh is
Cdh � BdhCpB

T
dh � �Cp�11 � 2�Cp�15 � �Cp�55, and the

standard deviation of dh is
��������
Cdh

p
. Because the total di-

latation d � �1 � η�dh, the variance of total dilatation is
σ2
d � �1 � η�2Cdh.

Covariances of Horizontal and Total Shear-Strain
Tensor Elements

The shear-strain tensor is γ � e � 1
3
Tr�e�I. Using

a � �2� η�=3, b � �1 � η�=3, and c � �1� 2η�=3, we
have γ11 γ21 γ22 γ33

� �
T � Bγ ~p, where

Bγ �
a 0 0 0 �b 0

0 1=2 0 1=2 0 0

�b 0 0 0 a 0

�c 0 0 0 �c 0

0
BB@

1
CCA;

andCγ � BγCpB
T
γ . Defining strain in the horizontal plane eh

as the first two rows and columns of strain tensor e, then
shear strains across vertical planes are γh � eh � 1

2
Tr�eh�I,

γh11 γh12 γh22
� �

T � Bγh ~p, and Cγh � BγhCpB
T
γh, where

Bγh � 1

2

1 0 0 0 �1 0

0 1 0 1 0 0

�1 0 0 0 1 0

0
@

1
A:

Covariances of the Maximum Principal Strains

Because the principal strains are eigenvalues of the
strain tensor, we cannot apply our simple procedure and,
thus, have not derived covariance matrices for these
quantities.

Covariance of Rotation

Let the rotation tensor be ω. Then we have
ω21 ω31 ω32

� �
T � Bω ~p, where

Bω � 1

2

0 1 0 �1 0 0

0 0 2 0 0 0

0 0 0 0 0 2

0
@

1
A:

Not surprisingly,Cω � BωCpB
T
ω , and the variances of torsion

and tilt can be easily expressed algebraically.
Torsion, rotation around the x3 axis, is ω3 � Bω3

~p,
where Bω3

� 0 �1=2 0 1=2 0 0
� �

, where we fol-
low Fung (1965) who defines ωij � �uj;i � ui;j�=2. As usual
Cω3

� Bω3
CpB

T
ω3
, yielding the expression found in Spudich

and Fletcher (2008), σω3
� 1

2

���������������������������������������������������������Cp�22 � 2�Cp�24 � �Cp�44
p

.
Expressions for σω1

and σω2
are also given in Spudich and

Fletcher (2008).
Tilt, as defined in Spudich et al. (1995) and Spudich

and Fletcher (2008), is
�����������������
ω2
1 � ω2

2

p
, rotation about a hori-

zontal axis. There is no comparable quantity defined in
Evans et al. (2009). Because tilt is a nonlinear combination
of rotations, its variance cannot be determined using our sim-
ple technique. However, following Papoulis (1965, p. 195),
if σω1

� σω2
� σω and if the mean values of ω1 and ω2

are zero, then the standard deviation σt of tilt is σt �
σω

�����������������
2 � π=2

p
. To be conservative we choose σω �

max�σω1
; σω2

�. We have tested this expression for σt using
numerical signals having known noise levels, and we have
found that it is usually about 70% of the actual variance
of the inferred tilt (i.e., it is a slight underestimate).

Data and Resources

No data were used in this article. A software pack-
age was developed for use with the MATLAB interac-
tive environment produced by The MathWorks™ (www
.mathworks.com).
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