1€ Eo Simulation of 3D Global Wave Propagation Foniiabiio
| MU Through Geodynamic Models 'Y 4

oyl R B. Schuberth, A. Piazzoni, H. Igel, H.—P. Bunge
Ludwig Maximilians University Munich

Dept. for Earth and Environmental Sciences, Ludwig—Maximilians-University Munich, // \
www.geophysik.uni-muenchen.de Theresienstrasse 41, 80333 Munich, Germany bernhard@geophysik.uni-muenchen.de

- S A

ADbstract This project aims at a better understanding of the forward problem of global 3D wave propagation. We Motivation
use the spectral element program “SPECFEM3D"” (Komatitsch and Tromp, 2002a,b) with varying input models of seismic
velocities derived from mantle convection simulations (Bunge et al., 2002). The purpose of this approach is to obtain seismic
velocity models independently from seismological studies. In this way one can test the effects of varying parameters of the
mantle convection models (MCM) on the seismic wave field. In order to obtain the seismic velocities from the temperature field e Possibility of testing the effect of various geodynam-
of the geodynamical simulations we follow a mineral physics approach. Assuming a certain mantle composition (e.g. pyrolite) ical parameters on the seismic wave field

we compute the stable phases for each depth (i.e. pressure) and temperature by system Gibbs free energy minimization. Elastic
moduli and density are then calculated with different equations of state (EOS), depending on the mineral phase. For this we
built a mineral physics database based on calorimetric experiments (enthalphy and entropy of formation, heat capacity) and
EOS parameters.

e Creation of velocity models independent of seismo-
logical observations

e Better understanding of the forward problem of seis-
mology

e EXxploration of different processing methods and con-
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e % Figure 1. Compila used in this study. a) Temperaure:'rr_l geodynamic mantle model. Figure 4. Elastic properties and d_e_nsity for a pyrolitic ma|_1tle
- - b) Velocity model der ing a mineral physics model. c) Velocity model obtained by linear scaling for a large range of P and T conditions obtained by applying
L g . appropriate EOS for the stable phases.
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Problems to be solved h ~ How?

1 e Y

1 | | | e Current computation of shear moduln is not yet consus— e Using appropriate equations of state for shear moduli
7 o ' \ tent (at the moment derived from AK135M using F VS. (done but not yet implemented)
g M-‘ ,‘\,\Mv ,,,e,\_,A\/\,, N 4 4,,4 A \& ( %). This is due to different depth to pressure relations _ : : : :
g ‘\“ R \ I N PREM and AK135M. e New Linux cluster will be available end 2005 which will
” 1 TV allow us to perform simulations with grid size suited
Tomography Model S20RTS | Rayleigh number in MCM is of order 10 too low which is to resolve boundary layers correctly and apply Rayleigh
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due to limitations in computer power leading to overes- numbers equal to estimates for Earth’'s mantle
timated temperature variations. In addition, the bound-
ary layers (appr. 200 km) are larger than in reality due
to grid ‘resolution.

Figure 5. Tokachi Oki M8.1 Sep. 2003, Transverse Component - Station WET, Germany
Due to the problems mentioned, comparisons to seis-

mological (reference) models are not yet feasible.
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