
The Spectral Element Method
for Seismic Wave Propagation

Theory, Implementation and Comparison
to Finite Difference Methods

Diplomarbeit von Bernhard Schuberth

abgegeben am
7. November 2003

Betreuer:
Prof. Dr. Heiner Igel

Department für

Geo- und Umweltwissenschaften

Sektion Geophysik

Ludwig-Maximilians-Universität

München

Contents

Acknowledgements v

Abbreviations and Symbols vii

Introduction 1

I History, Theory and Implementation of the SEM 5

1 Historical Overview 7

2 Basic Concepts in 1-D 11

2.1 Mathematical Formulation of SEM 12

2.1.1 The Weak Formulation of the Elastodynamic Equation in
1-D . 13

2.1.2 Domain Decomposition and Mapping Functions 15

2.1.3 Interpolation of Functions on the Elements 20

2.1.4 Integration of Functions over the Element Domain 22

2.1.5 The Elemental Mass Matrices 23

2.1.6 The Elemental Stiffness Matrices 24

2.1.7 Assembly of the Global Linear System 25

2.1.8 Integration of the Global Linear System in Time 27

2.1.9 Boundary Conditions . 28

2.1.10 The SEM with Chebychev polynomials 30

2.2 Implementation in the Program Code 35

2.2.1 Structure of the Program 35

2.2.2 Preparations for the Calculation of the Stiffness and Mass
Matrix . 36

2.2.3 Implementation of the Mesh in 1-D 38

2.2.4 Calculation of Time Step dt using the Stability Criterion . 38

2.2.5 Getting the Elemental Stiffness and Mass Matrices 38

2.2.6 Connectivity Matrix and Assembly Process 39

i

ii Contents

2.2.7 Assembly of the Global Linear System using the Stiffness
Matrix . 40

2.2.8 Assembly Process by Calculation of total Forces 44

3 The SEM for 3-D Seismic Wave Propagation 49
3.1 Mathematical Formulation of the SEM in 3-D 50

3.1.1 The Weak Formulation of the Elastodynamic Equation in
3-D . 50

3.1.2 Domain Decomposition and Mapping Functions 51
3.1.3 Interpolation of the Functions on the Elements 60
3.1.4 Integration of Functions over the Volume of the Element . 63
3.1.5 The Elemental Mass Matrices 64
3.1.6 Calculation of Forces in 3-D 66
3.1.7 Assembly of the Global Linear System 68
3.1.8 Implementation of sources in 3-D 69

II Results of the Simulations -
Evaluation and Comparisons 71

4 Evaluation of the SEM in 1D 73
4.1 Snapshots and Seismograms of 1-D SEM Simulations 74
4.2 Methodology of the Comparisons of SEM and OPO 78
4.3 Results of the Comparison . 81

4.3.1 Benchmark of the CPU time per time step 81
4.3.2 Comparison of SEM with Different Time Schemes 85
4.3.3 Comparison of different orders of SEM 89
4.3.4 Comparison of Accuracy and CPU Cost of the Spectral

Element Method with Optimal Operators 90

5 Evaluation of the SEM in 3-D 101
5.1 Seismograms of the Simulations 103
5.2 Benchmark of CPU Time per Time Step 112
5.3 Comparison of Performance . 113

6 Discussion 123

Summary 127

A Appendix 131
A.1 GLL Integration Weights and Collocation Points 133
A.2 The Fortran 1-D SEM Program Code 135

List of Figures 153

Contents iii

List of Tables 157

Bibliography 159

Acknowledgements

First of all I want to thank my supervisor Professor Heiner Igel for his guidance,
support and for proposing the interesting topic for this thesis. I am grateful
that he whishes students to attend international meetings at an early stage, so I
joined the EGS/AGU conference, April 2003 in Nice and a fantastic workshop
in Smolenice, Slovakia in September. In addition, he set up the collaboration
with Dimitri Komatitsch, so I was able to work with Dimitri in Pau, France, for
a week in May 2003.

Many thousand thanks go to Dimitri Komatitsch, without whom this thesis
would never be the way it is. Thanks for providing me with several SEM codes,
your knowledge on the whole topic and the reviewing of several parts of this
thesis. Especially in the last weeks of writing, your support and help were
brilliant, when daily e-mails were common.
And many thanks for the nice time in Pau!

Next I want to thank Professor Helmut Gebrande, and Professor Hans-Peter
Bunge representatives of the Geophysics Section of the Department of Earth and
Environmental Sciences of the LMU Munich for supplying an office and working
facilities, including the computer network. I also want to thank Hans-Peter
Bunge for interesting discussions.

Furthermore I thank all my colleagues in the Geophyisics Institute for their help
and open ears! Thousand thanks to you, Markus, whom I surely bothered most,
but also had most fun with. Thanks to Tobias Metz, for the good co-operation
and fruitful teamwork on the comparisons between Optimal FD Operators and
the SEM. He supported many good ideas and programs for the evaluation of the
codes.
A lots of thanks to Haijiang and Wiwit, not only for scientific discussions and
help, but also for the nice conversations on life and religion. Many thanks also
to Peter Danecek for helping when it was really needed.
Moreover I want to thank Michael Ewald, Gunnar Jahnke, Toni Kraft, Aji Su-
darmaji, Guoquan Wang, Asher Flaws, Gilbert Brietzke and Melanie Reichardt
of the Seismology group for all the small things they helped me with.

v

vi Acknowledgements

Thanks to Roman Leonhardt for the help on Linux and the computer network,
to Michael Winklhofer for helpful discussions, reviewing and the script on
Fortran and many thanks to Erika Vye for reviewing parts of the thesis and
the helping hand, especially in english grammar. And, at last, many thanks to
the people of the secretariate, all people of the other groups of the institute and
the complete staff.

Many thanks to you, Oliver, for really teaching me geophysics, especially rheol-
ogy and working with FEM. A thousand thanks to the crew of the Polarstern
ARK XVIII/2 cruise, especially to Klaus, Bärbel, Christina, Dani, Veit and Tobi
for the unforgettable and exciting time in the Artic and the knowledge what
geophysics can be besides flips and flops.
Many thanks to all my friends in the near and far field, especially of the
”Anglistenchor”, for lots of amusement, sports and fun during the last years, to
balance work and making life more favourable.

I am glad to owe to my Mother and Father all that I have achieved. You enabled
me to learn to love life, live the way I want to and supported every step of mine.
My greatest thanks and appreciation for all that you did for me!

No less admiration belongs to my brother Christian, the smartest person on
earth and the perfect gentlemen. Thank you very much for all your clever advise,
for being there when needed and for always leaving the bigger piece of cake to me.

The most lovely and loved one to mention is you, Conny. You make my world
perfect!
Sorry for all that you had to endure during the last weeks. It is you, who takes
the greatest part of help and support for my work.
Thank you for enjoying life with me!

Abbreviations and Symbols

This list comprises all symbols and abbreviations used, together with their
definition and page reference. This reference denotes the page number where the
symbol is used in its most significant context.
Typical mathematical conventions for variables, vectors, fields etc. are used:

• scalar functions and variables in italic letters, e.g.: x, f(x)

• vectors in small boldface letters, e.g.: u, f

• matrices in capital boldface letters, e.g.: M,K

Exceptions are made for special tensors, as for example the stress tensor σ of
second order or the fourth order tensor of elastic coefficients c, which are typically
denoted with small letters in geophysical literature.

Symbol Definition Page

FDM finite difference method. .2

FEM finite element method . 2

GLL Gauss-Lobatto-Legendre: a special integration quadrature of
Gaussian type . 15

ODE ordinary differential equation . 2

OPO optimal operators, an improved FDM. 2

PDE partial differential equation . 2

PML Perfectly Matched Layer, special class of absorbing boundary con-
ditions . 28

SEM spectral element method . 2

C Courant number used for the stability criterion 38

vii

viii Abbreviations and Symbols

f(x) 1-D volume force at coordinate x . 12

f global force vector . 26

g an arbitrary function . 19

ge restriction of a function or interval to the element e19

ġ differentiation with respect to time . 14

g(i),j = ∂gi(x)
∂xj

a comma indicates a spatial derivative; here the derivative of the

component i of any given vector g in the direction xj 50

J the Jacobi-Matrix of the mapping function 19

J the determinant of the Jacobi-Matrix, called “Jacobian” 19

iJ Jacobi matrix of the coordinate transformation from global to lo-
cal coordinates, i.e. the inverse of the mapping function 25

Ke
ij N ·N matrix elements of the elemental stiffness matrix belonging

to the spectral element e . 25

K global stiffness matrix . 26

` Lagrange polynomial . 20

`
′
i first derivative of Lagrange polynomial `i with respect to ξ . . . 22

`
′
ij the value of the first spatial derivative of `i at point ξj 25

m(x) the mass of a infinitesimal Volume around x 12

M e
ij N ·N matrix elements of the elemental mass matrix belonging to

the spectral element e . 24

M global mass matrix . 26

M−1 the inverse matrix of the global mass matrix 27

na overall number of anchor points of one element, used to define the
shape of the elements. .17

nd number of coordinate axises, i.e. the dimension of the considered
problem . 17

ne number of elements in the mesh . 15

ng total number of global grid points . 28

Abbreviations and Symbols ix

ngp “number of grid points”; measure of the size of a model, indepen-
dent from physical parameters . 78

npw “number of propagated wavelength”; measure of distance in seis-
mic modelling, independent from physical parameters 78

N degree of the Lagrange polynomials . 20

Na shape functions of the mapping, nd-products of Lagrangian poly-
nomials of degree 1 or 2 . 17

PN Legendre polynomial of degree N . 36

t time coordinate . 12

dt discrete time step of the time integration scheme 27

u(x) 1-D displacement at coordinate x . 12

ui value of a function (here u) at local coordinate ξ, equivalent to
u(ξi) . 23

u global displacement vector . 26

uti global displacement vector at time step i . 27

v test function used to get the weak formulation of the elastody-
namic equation . 14

V volume . 12

x spatial coordinate in 1-D, or first spatial coordinate in 3-D. . . .12

xe
a a = 0, . . . , N , anchor points of element e to define its shape . . . 17

α is the wave velocity in 1-D problems . 38

δij Kronecker symbol . 20

∆e length of 1-D elements. .16

εij the elements of the strain tensor with i, j = 1, . . . , nd 50

ε relative solution error, measure of accuracy of synthetic seismo-
grams . 79

Γ the boundary of the model domain Ω . 14

λ wavelength . 78

x Abbreviations and Symbols

Λ SEM standard interval [−1, 1] of local coordinates for every ele-
ment . 16

Λnd
= Λ the standard interval or reference square resp. cube for 2- or 3-D

SEM simulations; Λ = Λ⊗ Λ⊗ Λ . 54

µ Lamé constante, elasticity coefficient. .12

ω weights associated with the Gauss-Lobatto-Legendre quadrature
of integration. .22

Ω the domain of a model in 1-D . 14

Ωnd
= Ω the considered model domain with explicitly specified number of

dimensions nd; Ωnd
= Ω⊗ Ω⊗ · · · ⊗ Ω, nd times 50

ϕN
i general denotation for Lagrangian interpolators, which are poly-

nomials of degree N , satisfying ϕi(ξj) = δij 30

ρ density . 12

σij elements of the stress tensor with i, j = 1, . . . , nd12

ξ spatial coordinate used inside each element, i.e. the “local” coor-
dinate . 16

(ξ, η, ζ) = ξ local coordinates in 3-D; ξ ∈ Λ . 54

ξ̂ the unit vector of local coordinates ξ . 61

〈〉 mean value . 78

∇ Nabla operator; is equivalent to ∂
∂x

in 1-D . 14

⊗ tensor product . 50

∂ξ = ∂
∂ξ

short form of a partial derivative in the direction given by the
subsrcipt, roman number indices always denote a derivative in
global (x = 1, y = 2, z = 3) coordinates . 62

4 Laplace operator; is equivalent to ∂2

∂x2 in 1-D 14

Fe : Λ→ Ωe Coordinate Transformation from local ξ to global x coordinates,
i.e. “mapping function”. .16

Introduction

Even at the beginning of the third millenium, a time ruled by physical develop-
ment and technology, our knowledge of the Earths interior is still very limited.
This is mostly due to the fact that direct access and measurement of properties
is not possible. Yet, it is becoming increasingly necessary to learn more about
the structure of and processes within the Earth. The cause of visible geological
phenomenons is nowadays thought to originate from movements inside the Earth.
The theory of plate tectonics developed in the 1960’s has led to more effort in
understanding the forces acting on the crust. Since then mantle convection was
made responsible for those forces and the dynamics of the continents. Moreover,
the movement of material in the fluid outer core is known to sustain and influence
the geomagnetic field. Magnetic variations itself are of great interest not only to
science, but also for economy. Magnetic storms for example, whose effects at
the surface of the Earth depends on the intensity of Earth’s magnetic field, may
affect, even destroy electric power facilites, satellites and disturb radio commu-
nication.
Understanding the physics of earthquakes and gathering information on their im-
pact on mankind and infrastructure can lead to a better limiting of their effects.

Seismology plays an important role for all of the above considerations. It is the
only discipline that can provide pictures of the whole interior of the Earth and
thus gives constraints for theoretical models in geodynamics and geomagnetics.
The study of earthquakes over the last hundred years has also led to better risk
mitigation by construction of appropriate buildings and more attention to this
subject is paid by governments nowadays. In addition, the hazard assessment
especially needed by insurance companies was improved.
The major tool for modern seismology is the computer technology, which devel-
oped in the last four decades and has strongly influenced not only seismology but
the science as a whole. The possibility to compute highly sofisticated yet even
analytically unsolvable equations for gigantic structures has taken our knowledge
of the Earth an enormous step further. Weather prediction, circulation of the
oceans, thermodynamic models of the Earth and tomography of the structure of
our globe would be impossible without modern supercomputers.
Parallel to the development of computer hardware several different techniques
for the solution of ordinary (partial) differential equations (ODE,PDE) emerged.

1

2 Introduction

Based on the mathematics established by Gauß, Legendre, Taylor and many
other great minds, numerical techniques like the finite difference methods (FDM)
and finite element methods (FEM) evolved.

This work aims especially at understanding a further numerical approach, the
so-called spectral element method (SEM) and to compare it with some of the
methods mentioned above. The SEM, which is an extension to FEM, arose a lot
of interest in the last years. For computational seismology and fluid dyanmics, it
has several advantages over the other methods. So is the FEM, frequently used in
engineering, not applicable to seismological studies because of lack in accuracy.
Even though FDM have in many cases been applied successfully to simulate wave
propagation, they are not tailored to certain classes of problems. Moreover, FD
solutions suffer from suboptimal accuracy, too, albeit to a lesser degree than FEM
simulations.
An improved version of the FD operators was presented in the last decade to
obtain more accurate solutions. These are colloquially called “optimal operators”
(OPO). The SEM is said to be very accurate and has also been successfully
applied to various problems in computational seismology. The objective of this
thesis is to benchmark the SEM against the OPO so as to decide which one of
the methods may be more suitable for wave-field modelling.

Outline of the Thesis

This work is divided into two major parts. The first part deals with the theory
and mathematical background of the SEM and is intended to provide the reader
with the information needed to implement and apply the method, especially to
simulations of wave propagation.
After a brief introduction to the history of SEM in Chapter 1, the basic ideas
and concepts of the SEM are explained in full detail for one-dimensional prob-
lems (Chapter 2). Based on this theoretical framework, a computer programme
was developed to apply the SEM for 1-D wave propagation as no such code had
existed before. How the SEM formalism can be extended for three-dimensional
applications is demonstrated in Chapter 3.
In the second part, the SEM is compared with different FD methods in terms of
performance. It turns out that is necessary to develop a new definition of per-
formance that combines both accuracy and speed, as previous benchmark tests
were mostly concerned with accuracy alone. In Chapter 4, this definition is given
together with the results of the comparison between SEM and OPO for the 1-D
case. As 3-D simulations using OPO were not available at the time, the SEM is
compared to common FDM for the 3-D case (Chapter 5). This was done using
existing codes for both methods. A Fortran code for 3-D SEM simulations was

Introduction 3

provided by Dimitri Komatitsch and the FD Fortran code was written by sev-
eral students of the Geophysics institute of the Ludwig-Maximilians-University
Munich.
In Chapter 6 the results of the investigation are summarized and discussed. Ad-
ditional information, such as the Fortran 90/95 code for 1-D SEM simulations,
is provided in the Appendix,

Part I

The Spectral Element Method:
History, Theory and Practical

Implementation

5

Chapter 1

The History of the Spectral
Element Method

The first chapter deals with the history of the Spectral Element Method to
provide the reader with a profound background to this numerical technique.
To know about the provenience may be the key to understand the role of this
method in today’s research community.
The name of this method was derived from two previously developed numerical
approaches, which are the pseudo-spectral methods and the Finite Element
Method. The former one is known to be very accurate (it is exact up to the
Nyquist frequency), whereas the latter has the advantage of being highly flexible
when dealing with complex geometries.

The history of the FEM dates back to as early as the beginning of the 20th
century with two very important publications by Ritz [1909] and Galerkin
[1915]. The method resulting from the latter is also known as the method of
weighted residuals (Jung & Langer [2001]). The first work on modern FEM
was published in 1956 by Turner et al. [1956], and Clough [1960] was the first
to use the name “finite element” (see Zienkiewicz & Taylor [2000]). The
interest in the method increased in the years after publication of the first edition
of Zienkiewicz & Taylor [2000] in 1967 (see Jung & Langer [2001]) and it
is since the most frequently used technique to solve partial differential equations
in engineering.
In geophysics it was never coequal to the Finite Difference Method, which is the
most commonly used approach to simulate seismic wave propagation (Kelly
& Marfurt [1990]). Although the FEM has advantages for the definition of
numerical models, as the meshes created can be adapted very flexibly to the
geological structures, it suffers from low accuracy.
The pseudo-spectral method was first proposed by Kreiss & Oliger [1972]
(see Fornberg [1987]). The advantage of this technique is its high accuracy
and much less memory requirements. On the other hand, pseudo-spectral

7

8 Chapter 1. Historical Overview

methods are more difficult to implement in complex geometries, because the
position of grid points is fix as given by the choice of basis function. Moreover,
parallelisation is difficult because of globally defined operators. They can be
seen as a limiting case of FDM with increasing order. The PSM, the FDM and
the FEM all had their first appearance in seismic wave modelling in the early
1970’s (Kelly & Marfurt [1990]).

The SEM itself was first published by Patera [1984] in the context of fluid dy-
namics. The idea which led to its development was to combine the advantages of
the PSM with those of the FEM. That is, the accuracy and rapid convergence of
the former and the geometrical flexibility of the latter. The name was deduced
from the fact that the SEM has the same exponential convergence behaviour as
the PSM when the order of interpolating polynomials N tends to infinity. Pa-
tera [1984] used Chebychev polynomials to define the interpolating functions,
because he thought them to have good approximating properties. Later on, the
SEM was further developed in computational fluid dynamics by Maday & Pat-
era [1989] who introduced another type of interpolating functions, the Lagrange
polynomials, which led to the diagonal structure of the mass matrix when used in
combination with the Gauss-Lobatto-Legendre quadrature. Priolo & Seriani
[1991] were the first to use the SEM for simulation of wave propagation using
Chebychev polynomials. In their work they discussed the accuracy of SEM com-
pared to FEM and the analytical solution for one-dimensional wave equation. In
the following years they extended the Chebychev SEM to 2- and 3-D simulations
for different geological applications which gave motivation to the publications by
Seriani & Priolo [1994]; Priolo et al. [1994]; Padovani et al. [1994]; Pri-
olo [1999] and Seriani [1998]. The latter presented a version of this method
used on parallel architectures.
In the second half of the 1990’s Komatitsch [1997] and Komatitsch &
Vilotte [1998] developed the SEM with Lagrange polynomials for large scale
3-D wavefield modelling. It was the first time that an exactly diagonal mass ma-
trix could be obtained in seismological applications, which leads to a very simple
explicit time scheme and effective parallel implementation. This new evolution in
computational seismology gave rise to great interest in this method and to further
progression. A detailed theoretical introduction of this version of the SEM for
3-D problems in seismology was given by Komatitsch & Tromp [1999].
Chaljub [2000] was the first to introduce the SEM for global Earth simulations.
In the following years it was possible to model the full 3-D laterally heterogeneous
Earth, incorporating topography, attenuation and anisotropy (Komatitsch &
Tromp [2002a]) and later also the effects of the oceans, gravity and rotation of
the globe (Komatitsch & Tromp [2002b]). Hybrid methods were described by
Capdeville [2000] and Capdeville et al. [2003] who combined the SEM with
modal solutions based on normal mode summation after expansion of the spher-
ical harmonics. Moreover, on the methodical side, improvements of the SEM

Chapter 1. Historical Overview 9

were employed by Komatitsch et al. [2001], who extended it to use with trian-
gular elements in 2-D and an SEM on non-conforming meshes was published by
Chaljub [2000] and Chaljub et al. [2003]. In addition, the so-called “Perfectly
Matched Layer” absorbing boundary conditions for the variational formulation
of the elastodynamic equation was implemented in the SEM by Komatitsch &
Tromp [2003].
Applications to geological settings were performed to a great extent. Strong
ground motion simulations (Komatitsch et al. [2003a]) as well as the simula-
tion of different earthquakes (Komatitsch & Tromp [2001a,b]; Komatitsch
et al. [2003b]). At the time of the appearance of the present thesis new ideas
emerge to use the SEM in the context of rupture dynamics as presented at the
NMESD workshop, September 1-3, 2003 (Ampuero et al. [2003]). These latest
trends show that an important tool is now available for numerical modelling of
seismic waves, which has a great potential for the future, but is still not yet
methodologically sound.

Chapter 2

The Basic Concepts of the
Spectral Element Method in 1-D

In order to achieve a good insight into the spectral element method, the mathe-
matical treatment of the 1-D case of the general elastodynamic equation is dis-
cussed, followed by details on the computational implementation.

An advantage of this modus operandi is that readers, who know about the theory
of SEM beforehand, may skip Section 2.1 and concentrate on the practical
aspects.
In Chapter 3, it will be explained how to extend the SEM to 3-D problems. As
one will see, all features of SEM that are important for solving the 3-D wave
equations can be learned by looking at 1-D. In this way, the reader gets to know
all the information needed, while the occuring expressions and formulae remain
as simple as possible. Then in 3-D, the 1-D formulae are simply expanded using
similar expressions for the two newly added coordinate axes. Only the concept
of tensorisation and more complex meshing algorithms will be new for the reader.

Some of the concepts of the method described below are fundamental to the FEM
and the SEM itself is based on them. One should keep this in mind as most of
it will be introduced from the SEM point of view. It will become clearer in the
course of this text that the SEM is a high order finite element method.
Readers who want to obtain a better understanding of the FEM are referred to
the standard literature on this topic as for example Hughes [1987], Zienkiewicz
& Taylor [2000] or Schwarz [1984].
The description of the SEM in this thesis is mainly based on papers by Dim-
itri Komatitsch, Jeroen Tromp and Jean-Pierre Vilotte with co-workers (Ko-
matitsch [1997]; Komatitsch & Tromp [1999, 2002a,b]; Komatitsch &
Vilotte [1998]). Especially the use of Lagrange polynomials in SEM for wave
propagation simulations was introduced by Komatitsch [1997]. Preceding work
by Priolo & Seriani [1991]; Seriani & Priolo [1994] will also be mentioned
as it describes the use of different approximating basis functions based on Cheby-

11

12 Chapter 2. Basic Concepts in 1-D

chev polynomials.

2.1 The Mathematical Formulation of the Spec-

tral Element Method

Definition of the Mathematical Problem

When modelling seismic waves, the aim is to solve the equation of motion in
terms of displacement or equivalently velocity or acceleration in a continuous
medium. A general expression can be derived from elasticity theory as shown in
Aki & Richards [2002]. It relates the displacement of a certain volume inside
a given medium (i.e. with certain elastic properties and certain density) with
the stresses and external forces acting on that volume.
I will not discuss topics like attenuation or anisotropic media in this thesis, which
surely are of much interest when modelling seismic waves in the Earth. But
dealing with these would be far beyond the scope of this work. As shown in the
publications Komatitsch & Tromp [2002a,b]; Komatitsch et al. [2000, 2003a]
the SEM is able to incorporate all of the mentioned effects on wave propagation
with high accuracy.
The general wave equation of a one-dimensional medium can be written as follows:

ρ(x)
∂2 u(x, t)

∂t2
− ∂

∂x

(
µ(x)

∂u(x, t)

∂x

)
= fsource(x, t) (2.1)

Where x and t are the spatial and time coordinate respectively, ρ(x) is the
density, u(x, t) is the displacement field, µ is an elasticity coefficient (Lamé
constant) and fsource is an external source, exciting the medium. This particular
SH-formulation of the wave equation is chosen to be consistent with the
formulations used in Metz [2003]. The derivation of optimal FD operators is
discussed there, which were compared to the SEM. Details on these simulations
and results of the comparison are presented in Chapter 4.

Note that all three terms of Equation (2.1) are volume forces:

fres(x, t) = ρ(x)
∂2 u(x, t)

∂t2
=

m(x)

V
· a(x, t) (2.2)

finternal =
∂

∂x
(µ

∂u(x, t)

∂x
) =

∂

∂x
σ(x, t) (2.3)

fexternal = fsource a force acting on the medium (2.4)

The second equals sign of Equation (2.3) is valid due to Hooke’s Law for the 1-D
case. The generalized form of Hooke’s Law can be found in Chapter 3 (Eq. 3.3).

2.1. Mathematical Formulation of SEM 13

In the spectral element method the considered model domain Ω (here a line),
in which the simulation shall be performed, is devided into several elements
of the same type, but not essentially of the same length. The elements are
nonoverlapping and only connected at one gridnode. That is, the calculations
performed inside both of two neighbouring elements contribute to the same
degree to the values of the physical parameters at the shared node. This will
get clearer when we take a closer look at the “connectivity-matrix”. This
matrix contains the information, which node belongs to which element. But be-
fore we do so, we will derive the mathematical formulations for one single element.

In the following sections the steps that are needed to perform a simulation of
wave propagation with the SEM are demonstrated. As in the FEM, we do not
consider the wave equation in its differential form of Equation (2.1), but introduce
the variational or so-called “weak” formulation, which uses the integrated form
of the functions. Starting from this equation we will see how the model domain
is meshed and how the meshing has to be taken care of in the weak formulation.
Then we will focus on the elements. These are defined in such a way that all fol-
lowing considerations apply to all elements in a similar manner. This simplifies
matters significantly as one has to derive the formulations only for one element
and the others are treated in exactly the same way. On the element we define a
rule for the interpolation of functions and introduce the corresponding interpo-
lating polynomials. Afterwards, the discretized functions have to be integrated
numerically, which will be done by the use of a special integration quadrature.
This will lead us to two matrices, defined for each element separately: the ele-
mental mass matrix and the elemental stiffness matrix. Then we have to put the
elements back together corresponding to the meshing we did in the beginning.
This means, that the contributions of the functions have to be assigned to the
correct gridpoints of the global mesh. This process is called “assembly”. At the
end we will get a linear system of equations, which can be rewritten in a matrix
formulation. The final matrix equation is usually referred to as the “global” sys-
tem. It is then the basis for the solution of the DE in time as it can be discretized
using an explicit FD scheme in the time domain.

2.1.1 The Weak Formulation of the Elastodynamic Equa-
tion in 1-D

To derive the weak formulation of Equation (2.1), let us begin with the one-
dimensional wave equation for an inhomogeneous elastic medium (Eq. 2.1):

ρ
∂2u

∂t2
− ∂

∂x
(µ

∂u

∂x
) = f (2.5)

u, f , ρ and µ are considered to depend on x, and u and f also on t, in the
following without further explicit declaration.

14 Chapter 2. Basic Concepts in 1-D

The first step to get the weak formulation is now to multiply Equation (2.5)
with a time-independent so-called test function v(x) on both sides. This may
be any arbitrary function of the set of functions that are, together with their
first derivative, square integrable over Ω (i.e. a continuous and “well-behaved”
function). Afterwards we integrate the equation over the spatial domain. Both
steps do not change the solution of the equation. The vector notation ∇ = ∂

∂x

is used from now on to state the expressions in a similar way that is needed for
3-D problems:

∫

Ω

v ρ ü dx −
∫

Ω

v ∇(µ ∇u) dx =

∫

Ω

v f dx (2.6)

If we integrate the second term on the left side of Equation (2.6) by parts, using
a general expression in terms of dimensions, and denote the boundary of Ω by Γ,
we obtain:

∫

Ω

ρ v ü dΩ −
∫

Γ

v µ ∇u dΓ +

∫

Ω

∇v µ ∇u dΩ =

∫

Ω

v f dΩ (2.7)

The general integration by parts, wich results in one integral over Γ and one over
Ω can be derived by combination of the chain rule and the Gaussian divergence
theorem (Bronstein et al. [1999], page 662). Here in fact the boundary only
consists of two points on either side of the one-dimensional model domain, but
this notation is chosen to be consistent with the 3-D case. In 1-D the integral
over Γ thus is the antiderivative of the integrand:

∫

Γ

v µ ∇u dΓ = v µ ∇u
∣∣∣
Γ

(2.8)

Then we introduce a zero stress condition on the boundary Γ (i.e. using a
free surface boundary condition, which is also called “Neumann condition” in
mathematical terms):

µ
∂u

∂x

∣∣∣
Γ

= σΓ = 0 (2.9)

Thus the integral over Γ vanishes, which leads to the final form of the weak
formulation which we will use in the following:

∫

Ω

v ü dx +

∫

Ω

∇v µ ∇u dx =

∫

Ω

v f dx (2.10)

The application of other boundary conditions is shown in Section 2.1.9.

This is the weak form of the one-dimensional wave equation. As will be shown in
the next subsections, the discretization and decomposition of the model leads to

2.1. Mathematical Formulation of SEM 15

the previously mentioned linear system of equations. To do so, the N + 1 collo-
cation points ξi, i = 0, . . . , N of the Gauss-Lobatto-Legendre (GLL) quadrature
of order N are considered. Their definition will be given in Section 2.2.2. The
order N is typically chosen between 4 and 8.

2.1.2 Domain Decomposition and Mapping Functions

As mentioned earlier, the model domain has to be divided into ne elements. This
is done by taking potential inhomogeneities or discontinuities of the model into
account. It may be necessary to adapt the elements to the velocity structure as to
avoid oversampling in regions of high wave velocities. In two- or three-dimensional
simulations the topography and its realistic implementation in the model are of
great interest. Thus, certain rules exist how to create a well matching mesh and
how to create the corresponding elements, which may differ significantly. This
process is usually time consuming, but on the other hand makes up the advantage
of methods using elements over FD methods.
The domain decomposition is now discussed in detail, introducing all needed
concepts. In the next chapter, when the SEM for 3-D applications is explained,
some examples of meshes and problems that may occur in this context will be
given.
Figure 2.1 illustrates the idea of dividing the model domain into elements on the
basis of a one-dimensional string. Each element domain is then transformed as
shown for element number 1. This issue will be discussed in the forthcoming
section. Element number 3 is here defined using three anchor nodes, to include
this option for completeness, even if it does not change the shape of a 1-D element.
After dividing the model domain into subdomains Ωe, the integrations of Equa-
tion (2.10) are performed independently on these subdomains. Like this we es-
tablish the weak form for every element separately:

∫

Ωe

v ü dx +

∫

Ωe

∇v µ ∇u dx =

∫

Ωe

v f dx (2.11)

for e = 1, . . . , ne.

Mapping Functions - Transformation of Physical Coordinates onto a
Standardized Interval

Via a coordinate transformation, each element is mapped onto the standard inter-
val Λ = [−1, 1] of the GLL integration quadrature1. Thus all further calculations
can be done in the same way for all the elements. The transform function is
usually called “mapping function”. It transforms the “global” (or physical) coor-
dinates xk and xk+1 of the element number k into the so-called “local” coordinates

1most quadratures used in FEM make use of the more typical interval ΛFEM = [0, 1]

16 Chapter 2. Basic Concepts in 1-D

Domain decomposition

1−D "meshing"e

en = 3en = 2en = 1

Domain Ω

ΩΩ

Subdividing intoΩ

n elements

"Mapping"

10

2Ω1 3

−1

x

x x x x2 431

Figure 2.1: Simple domain decomposition and mapping. Here the model is dev-
ided into three elements. Element number 3 is show with na = 3 anchor nodes.

ξ with ξ ∈ Λ.
In the general case, where the elements have different lengths, the mapping func-
tion has to be defined separately for every element. In the case of elements having
the same length, the transforming function is identical for all of them. It has the
following form in 1-D:

Fe : Λ→ Ωe

xe(ξ) = Fe(ξ) = ∆e
ξ + 1

2
+ xe (2.12)

Ωe is the part of the model domain belonging to the e-th element, ∆e is the
length and xe the left point of the element number e. The derivation of this
formula is given in Equation (2.16).

Generally the mapping is done using shape functions Na, which are defined on
na anchor nodes xe

a inside the element (the definition is given in Equation 2.13).
For one-dimensional elements two anchor nodes per element are sufficient to
define a linear structure, one node at each end. For two or three-dimensional
elements more anchor points per coordinate axis may be considered to create
curved elements. Usually na = 3 is chosen when the geometry is smooth
as more nodes result in unnecessary accuracy of the meshing (Komatitsch
& Tromp [1999]). Using two points per dimension for three-dimensional
elements would result in 23 = 8 anchor nodes, whereas 33 = 27 nodes

2.1. Mathematical Formulation of SEM 17

would result from shape functions defined on three points per coordinate axis.
Figures and definitions for 3-D elements can be found in Chapter 3, Section 3.1.2.

Figure 2.2 and 2.3 show the one-dimensional shape functions of the SEM which
are Lagrange polynomials defined on the anchor nodes of the element. The
quadratic shape functions on three points are shown here for completeness. Their
use is only of relevant for modelling higher dimensional problems. The definition
of the Lagrange polynomials is given in Equation (2.21) in the next subsection.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.2: One-dimensional shape functions on two anchor nodes.

In general the shape functions are nd-products of Lagrangian polynomials of
degree 1 or 2, depending on the model (e.g. curved surfaces, interfaces etc.),
with nd being the number of dimensions of the considered problem. The general
mapping function is of the form:

xe(ξ) =
na∑

a=1

Na(ξ) xe
a (2.13)

The Lagrange polynomials of degree N = 1 in Figure 2.2 can be written as:

`1
0(ξ) =

ξ − (+1)

−1− (+1)
= −ξ − 1

2

`1
1(ξ) =

ξ − (−1)

1− (−1)
=

ξ + 1

2
(2.14)

18 Chapter 2. Basic Concepts in 1-D

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.3: One-dimensional shape functions on three anchor nodes.

See the general definition of the Lagrange polynomials in Equation (2.21) for com-
parison. The shape functions in 1-D then simply are the Lagrange polynomials
itself.

N1 = `1
0 N2 = `1

1 (2.15)

Using these expressions we can derive the mapping function defined with two
anchor nodes in 1-D, which was given earlier in Equation (2.12). Considering
the element k with its corresponding anchor nodes xk and xk+1 and introducing
the notation xk = xk

1 and xk+1 = xk
2, Equation (2.13) will lead to:

xk(ξ) =
2∑

a=1

Na(ξ) xk
a

= `1
0 xk

1 + `1
1 xk

2

= xk
1 · (−

ξ − 1

2
) + xk

2 · (
ξ + 1

2
)

=
xk − xkξ + xk+1ξ + xk+1

2

=
xk + (xk+1 − xk)ξ + [xk + (xk+1 − xk)]

2

=
xk + ∆ekξ + xk + ∆ek

2
, ∆ek = xk+1 − xk

= ∆ek
ξ + 1

2
+ xk (2.16)

2.1. Mathematical Formulation of SEM 19

This is what we expected from Equation (2.12). So far we have discussed the
coordinate transformation itself. Now an explaination on how this transforma-
tion affects the subsequent considerations is presented.

As we will see later, we have to integrate over the spatial coordinate. When doing
so, we have to take the contribution of the transformation into account, which
then occurs under the integral as the determinant of the transformation matrix of
the mapping. This transformation matrix is usually called “Jacobi-Matrix” and
denoted by J. Its determinant is then referred to as “Jacobian” and denoted by
J . The term “matrix” is used here in the context of 1-D problems, although it is
clear that in this case it consists of one matrix element only. In this way on can
use the same expressions for the 3-D case. More information about the Jacobian
and the Jacobi matrix can be found in the mathematical standard literature, for
instance Bronstein et al. [1999].

The Jacobi-Matrix and -Determinant of the Mapping Function

One of the big advantages of the methods using elements is that one is able to
apply the same mathematics to all elements in a similar way, but dealing with
every element separately.
In order to achieve this we have to perform the above coordinate transformation
Fe(ξ) for each element through which it is mapped onto the standard interval of
the GLL integration quadrature Λ = [−1, 1]. It is known from mathematics that a
coordinate transformation has to be taken into account when performing it during
an integration. This is the case in Equation (2.11). An additional term appears
under the integral, which is the Jacobian. In general, a coordinate transformation
under an integral has to be performed in the following way (Bronstein et al.
[1999]):

∫

Ωe

g(x) dx =

∫

Λ

ge(ξ)
dx

dξ
dξ =

1∫

−1

ge(ξ) J e dξ (2.17)

where g is an arbitrary function and the superscript denotes the restriction of g
on the element number e.

The Jacobi-Matrix and its determinant are hereby generally defined as:

Je =
dFe(ξ)

dξ

J e = det Je (2.18)

20 Chapter 2. Basic Concepts in 1-D

In the present case of the one-dimensional SEM they are written as:

Je =
dxe

dξ
, J e = |dxe

dξ
| (2.19)

In practice, the elements of the Jacobi-Matrix are computed using the shape
functions of the meshing:

dx(ξ)

dξ
=

na∑
a=1

dNa(ξ)

dξ
xa (2.20)

In the case of 1-D elements having the same length ∆e, the Jacobian becomes
J = ∆e

2
.

2.1.3 Interpolation of Functions on the Elements

The analytical functions of Equation (2.11) must now be approximated by discrete
functions using an appropriate interpolation scheme on some discrete points. It
turned out that it is very convenient to use Lagrange-Polynomials `N as interpo-
lating functions, which are defined on the collocation points of the Gauss-Lobatto-
Legendre quadrature for integration together with an interpolation scheme of La-
grangian type. Typically a degree N = 4, . . . , 8 is chosen for the polynomials.
The definition of the GLL quadrature and its corresponding collocation points is
given in Sections 2.1.4 and 2.2.2.
Using the same points for interpolation and integration is the key feature of the
SEM in connection with Lagrange functions. This will become clearer when we
will talk about the mass-matrix as it will lead to the exact diagonal structure of
this matrix. The Lagrange polynomials are defined in the following way:

`N
i =

N∏
j=0
j 6=i

ξ − ξj

ξi − ξj

(2.21)

The superscript N will be omitted in the following as it stays the same during
the calculations.

The Lagrange polynomials have an important characteristic for our considera-
tions. Each polynomial `i is exactly 1 at the coordinate ξi and exactly 0 at all
other nodes of the element. Between the collocation points the polynomial may
have any value. But as we are only interested in the discrete points now, this
does not change the following mathematical derivations. This property of the
interpolating functions can be expressed by means of the Kronecker-delta δij:

`i(ξj) = δij (2.22)

2.1. Mathematical Formulation of SEM 21

The functions we are interested in are then interpolated inside the elements using
the Lagrange interpolation scheme:

ue(ξ) ≈
N∑

i=0

ue(ξi) `i(ξ) (2.23)

ue is the function u restricted to the area [xe, xe+1] of element e mapped onto
the standard interval. Because of the property of the polynomials in Equation
(2.22), the approximation of the function ue inside the element e is exact on
the collocation points and continuity of the functions across the borders of the
elements is therefore assured. Equation 2.23 also serves for computing the value
of a function at any point ξ inside the element, whose values are known at all
GLL-points.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.4: Lagrange polynomial `6 of order N = 8. The collocation points can
be clearly distinguished as the points where the function takes the values 0 and
1.

As we can see on the left side of Equation (2.11), we need to interpolate the two
derivatives of ue and ve which appear in the second term. To achieve this, we will
have to calculate the derivations of the Lagrange polynomials on the collocation
points of the element as the interpolation of a derivated function can be expressed
as:

∇ue(ξ) ≈
N∑

i=0

ue(ξi)`
′
i(ξ) (2.24)

22 Chapter 2. Basic Concepts in 1-D

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.5: All six Lagrange polynomials of order N = 5.

How to obtain the derivatives `
′
i in practice will be explained in Section 2.2.2.

2.1.4 Integration of Functions over the Element Domain

The next step on the way to the matrix formulation of Equation (2.11), which
we finally want to obtain, will now be presented in the following. As we are
still treating each element separately, the integration has to be performed over
the interval [−1, 1]. This is done using the so-called Gauss-Lobatto-Legendre
quadrature of integration, i.e. transferring the integral into a finite weighted
sum:

∫

Λ

g(ξ) dξ ≈
N∑

i=0

ωi g(ξi) (2.25)

ωi are the weights of the GLL quadrature. Their definition will be given in
paragraph 2.2.2. Note that g(ξ) is again an arbitrary function defined on the
interval Λ. The collocation points ξi, i = 0, . . . , N are hereby the N + 1 roots of
the first derivative of a Legendre polynomial2.

The GLL quadrature is a special case of the Gauss quadrature, which has the
same form as Equation (2.25), only the choice of collocation points is different
(see Bronstein et al. [1999], page 894 and 895). In the Gauss quadrature the

2Their calculation is shown together with the integration weights in Section 2.2.2.

2.1. Mathematical Formulation of SEM 23

boundary points -1 and 1 of the standard interval are not included. This leads to
a numerical integration which is exact for polynomials up to degree 2N + 1. In
contrast to that the GLL quadrature is exact only for polynomials up to degree
2N − 1. This may seem very disadvantageous, because we have to integrate
polynomials of degree 2N (resulting from the product of the test function and
the displacement). But only the GLL quadrature allows for a diagonal mass
matrix as the Lagrange polynomials for the interpolation can then be defined on
the same points.

2.1.5 The Elemental Mass Matrices and Their
Diagonality

In this paragraph the procedure how to get a matrix formulation for Equation
(2.11) is demonstrated. This formulation, which is valid for one single element, is
obtained by successively applying all previously discussed steps to the integrals
in this equation. After recombining the matrices of the elements we get a linear
system of equations for the whole domain, the “global” system. This will then be
the basis for the solution of the integration over the time-domain, which is done
using a typical explicit FD scheme.
Starting with the first integral of Equation (2.11) we obtain for one element:

↓ mapping, Jacobian is needed

∫

Ωe

ρ(x) v(x) ü(x) dx =

∫

Λ

ρe(ξ) ve(ξ) üe(ξ) J e(ξ) dξ

interpolation of v and ü ↓

≈
1∫

−1

ρ(ξ) [
N∑

i=0

vi `i(ξ)] [
N∑

j=0

üj `j(ξ)] J (ξ) dξ

GLL quadrature ↓

≈
N∑

k=0

{ρ(ξk) ωk [
N∑

i=0

vi `i(ξk)] [
N∑

j=0

üj `j(ξk)] J (ξk)}

(2.26)

For simplification v(ξi) and ü(ξj) are expressed by vi and üj respectively. The
same applies to ρ and J in the next equation. The superscript e points out
that the functions have to be restricted to the element number e when being
transformed from global to local coordinates. This is valid for all of the following
considerations, but for clarity it will be droped from now on.

24 Chapter 2. Basic Concepts in 1-D

As there are no restrictions to the choice of v we can set vi = 1 and by using
Equation (2.22) we get:

N∑

k=0

{ρ(ξk) ωk [
N∑

i=0

vi `i(ξk)] [
N∑

j=0

üj `j(ξk)] J (ξk)} =

=
N∑

k=0

{ρk ωk [
N∑

i=0

δik] [
N∑

j=0

üj δjk] Jk}

=
N∑

j=0

{üj [
N∑

i=0

N∑

k=0

ρk ωk Jk δik δjk]}

= üjM
e
ij (2.27)

Here we use the implicit sum convention over repeated indices for the last relation,
which was originally introduced by Albert Einstein.
M e

ij are now the (N + 1) · (N + 1) elements of the elemental mass matrix of the
form:

M e
ij = ρi ωi Ji δij (2.28)

Equation 2.28 follows directly from the definitions of the Kronecker-delta δik·δjk =
δij and tells us that only the diagonal elements of the elemental mass matrix and
thus also of the global mass matrix are occupied. This is the key feature of the
SEM in combination with the Lagrange polynomials. It simplifies and speeds
up the inversion process of the mass matrix significantly as one only has to take
the reciprocal value of the diagonal elements. In addition, computer memory
requirements are reduced by a great amount as the values can be stored in a
one-dimensional vector instead of a two dimensional matrix.

2.1.6 The Elemental Stiffness Matrices

The elemental stiffness matrices are derived in a similar way. But during their
calculation we have to take a further term into account, which occurs because
of the coordinate transformation of the Nabla-operator ∇ (i.e. in this case a
one-dimensional derivation in space). Another point we have to keep in mind is
that Equation 2.22 does not hold for the derivations of the Lagrange polynomials.
Therefore not only the diagonal but all elements of the elemental stiffness matrix

2.1. Mathematical Formulation of SEM 25

are non-zero. Shown below is the derivation of the elemental stiffness matrix
starting with the second integral of Equation (2.11). Note that in the first state-
ment the Nabla operator ∇x itself has to be transformed to local coordinates,
afterwards denoted ∇ξ. As we transform global to local coordinates in this case
(Ω → Λ), we have to calculate the Jacobi-Matrix of the inverse transformation
of the previously discussed mapping, which will be denoted by iJ:

∫

Ωe

∇x v(x) µ(x) ∇x u(x) dx =

=

∫

Λ

∇x v(ξ) µ(ξ) ∇x u(ξ) J (ξ) dξ

=

∫

Λ

∇ξ v(ξ)
∂ξ

∂x
µ(ξ) ∇ξ u(ξ)

∂ξ

∂x
J (ξ) dξ

≈
1∫

−1

[
N∑

i=0

vi `
′
i(ξ)] µ(ξ) [

N∑
j=0

uj `
′
j(ξ)]

(
∂ξ

∂x

)2

J (ξ) dξ

≈
N∑

k=0

{ωk [
N∑

i=0

vi `
′
i(ξk)] [

N∑
j=0

uj `
′
j(ξk)] µk

iJ
2
(ξk) J (ξk)}

=
N∑

j=0

{uj [
N∑

i=0

N∑

k=0

µk ωk
iJ

2

k Jk `
′
ik `

′
jk]}

= ujK
e
ij (2.29)

Again we have used the sum convention in the last expression of Equation (2.29)
and we introduced the notation `

′
i(ξk) = `

′
ik. Obviously, the elemental stiffness

matrix is fully occupied since `
′
ij 6= δij. It can be computed using:

Ke
ij =

N∑
i=0

N∑

k=0

µk ωk
iJ

2

k Jk `
′
i(ξk)`

′
j(ξk) (2.30)

2.1.7 The Assembly of the Global Linear System

Having introduced all features of the SEM on the elemental level, we have to step
back to physical coordinates again and add all the contributions of previously
gained matrices together to obtain a global linear system, which we can then
invert for the integration in the time domain. This step is called the “assembly”
and can be performed in two different ways.

26 Chapter 2. Basic Concepts in 1-D

The more complicated one is to calculate all elemental stiffness matrices,
assemble them once during a simulation and then multiplying the global stiffness
matrix with the displacement vector uti in each time step ti, as it is given in
Equation (2.34). The problem using this procedure is to calculate the elemental
stiffness matrices in 2- or 3-D. But as it is possible, even simple in 1-D, and
making use of some standard FEM features, it will be introduced it in Section
2.2.6.

The second and more convenient way of assembling the global system is to
compute the forces at each node of the global numerical grid separately by
first calculating the forces on elemental level and afterwards summing the
contributions on nodes shared by elements (assembly). This approach involves
the storage of elastic properties, Jacobi-Matrices and corresponding Jacobians
throughout the whole simulation (i.e. during the time loop), calculation of
stresses and numerical integration at all grid nodes and for all time steps as well
as the addition of external forces. It has therefore higher memory requirements.
The concrete procedure of the calculation of forces is explained together with a
descriptive illustration of the assembly process in Section 2.2.

They both need an appropriate information, which element (and its correspond-
ing values at the collocation points) contributes to the values of the functions
at the global nodes. This information consists of a transformation of the global
numbering of the nodes to the local numbering of the interpolating points and
elements and is stored in a matrix called “connectivity-matrix”. All this is dis-
cussed when I demonstrate the practical implementation of the SEM (Sec. 2.2.6).
When dealing with the theory it suffices to know that there is an appropriate op-
erator called “assembly-Operator” A, which reassembles the elemental matrices
to a globally defined expression (see Komatitsch & Vilotte [1998]):

M =
ne

A
e=1

(Me) (2.31)

In this way we can assemble all matrices (Me and Ke) and vectors (ue and f e)
defined for the elements separately to obtain a global matrix equation. After hav-
ing performed all steps mentioned previously, one finally gets this global matrix
equation derived from the weak formulation of the DE:

Mü + Ku = f

Mü + finternal = fexternal (2.32)

When calculating the complete forces at every node instead of computing them
using the stiffness matrix, the global linear systems of equation reduces to:

Mü = ftotal (2.33)

2.1. Mathematical Formulation of SEM 27

By applying a commonly used explicit FD scheme this equation then has to be
inverted to solve the time-dependent problem.
In fact, to set up this equation correctly one would have to transpose both
matrices M and K. But as they are symmetric, this can be neglected.

2.1.8 Integration of the Global Linear System in Time

In order to integrate Equation (2.32) in time, an explicit 3 point FD scheme is
used in the present 1-D code. The solution for the displacement at the next time
step ti + 1 is obtained by inverting the mass matrix, which gives:

uti+1
= dt2

[
M−1 (f −Kuti)

]
+ 2uti − uti−1

(2.34)

Both matrices M and K need not to be transponed as they are symmetric (see
Eqs. 2.28 and 2.30).
The inversion of the mass matrix (resp. vector) is very easy as every element
of the inverse vector can be derived by the reciprocal value of the corresponding
element of the mass vector. The implementation in the code is very convenient
when using Fortran as explained in Section 2.2.5. It is important to state here
that the overall accuracy of the method is mainly governed by the accuracy of
the time integration scheme, and not by the spatial discetization, especially when
simulating a great number of time steps.

Further Time Integration Schemes

One important group of generalized time integration schemes are the so-called
“Newmark-type” schemes. The general form is for example explained in Ko-
matitsch [1997] and Hughes [1987]. Latter also discusses stability issues.
The general scheme is written using two different coefficients and its behaviour
stronlgy depends on the choice of these. Using one coefficient equal to zero
and the other one exactly 0.5 leads to an explicit second order scheme, which
is equivalent to a second order finite difference scheme (Komatitsch [1997]).
One special property of this explicit Newmark scheme is the conservation of total
angular momentum. In addition, they provide higher accuracy of the discrete
integrations. Thus these are mostly prefered. It can be written in acceleration or
in velocity formulation. Either one of them can also be rewritten in an iterative
predictor-corrector formulation.
Two formulations beside the simpler explicit FD scheme given above were used
in this study for comparison of 1-D simulations. Both use an acceleration formu-
lation and differ in number of iterative steps of the predictor-corrector algorithm.
Small excerpts of the codes, illustrating the implementation of these time inte-
gration schemes, is given in the Appendix A.2.

28 Chapter 2. Basic Concepts in 1-D

2.1.9 Boundary Conditions

The last point that will be discussed in the context of the theory of SEM is how
to implement several different boundary conditions.
We have seen during the derivation of the weak formulation that free surface
boundary conditions (the Neumann conditions) are naturally included in
methods using an elemental approach. This is another big advantage of the
SEM, compared to FD methods, where the free surface conditions need great
effort to be implemented. It is, together with the better approximation of
curved topography, the reason why the SEM is better suited for the simulation
of surface waves.
It shows up that the implementation of other boundary conditions such as
rigid (Dirichlet conditions), periodic or absorbing boundaries is also not very
difficult. Only the latter one poses problems in real simulations. But only very
recently, the so-called “Perfectly Matched Layer” (PML) absorbing conditions
were introduced in the context of the weak formulation by Komatitsch &
Tromp [2003] which show very high efficiency. The PML were in the first part
introduced for FD simulations of wave propagation in heterogeneous media using
the differential form of the wave equation in the velocity-stress formulation by
Collino & Tsogka [2001].

Rigid Boundary Condition

The simplest boundary condition beside the free surface condition is a rigid
boundary. This condition for rigid boundaries implies that the displacement
at the boundary Γ is 0 for all times:

uΓ(t) = 0 , ∀ t (2.35)

The rigid behaviour of the boundaries can easily be obtained in the simulations by
just omitting the lines and rows of the matrices and vectors of the global system
belonging to the boundary nodes. This is often referred to as the “condensation”
of the matrices. Like this we implicitly specify that the values of u are 0 for all
times. For the vectors in the 1-D case that means only considering the global
nodes from 2 to (ng − 1), ng being the total number of grid points in the global
mesh.

uti+1
(2,...,ng−1) = ∆t2 ·M−1(2,...,ng−1) ftot(2,...,ng−1) +

+ 2uti(2,...,ng−1) − uti−1
(2,...,ng−1) (2.36)

2.1. Mathematical Formulation of SEM 29

Periodic Boundary Condition

Periodic boundary conditions can also easily be implemented in a SEM code. The
only change compared to the zero stress condition is that in this case the first and
the last node of a one-dimensional string are now the same. This means that the
first and the last spectral element contribute to the values of displacement at this
node. The whole string can be seen as a ring now. In terms of the global system
of equations we have to add these contributions to the elements of the mass- and
stiffness matrix, or when using forces instead, the force vector, corresponding to
the node where the “ring” is welded together. In other words, we have to assemble
the last and the first element in exactly the same way as all other elements are.

Mperiodic
1,1 = M1,1 + Mng ,ng fperiodic

1 = f1 + fng

Mperiodic
ng ,ng

= Mng ,ng + M1,1 fperiodic
ng

= fng + f1 (2.37)

In the case of the stiffness matrix it would be a bit more complicated as one would
have to expand the stiffness matrix with 2N columns to account for the elastic
properties of both, the first and the last element, to the value of displacement at
node 1 = ng.

Absorbing Boundary Condition

Absorbing boundaries in seismic wave simulations still pose a big problem. Nev-
ertheless, the PML absorbing boundaries seem to be very efficient and may be
sufficient for most of the problems in seismology. The first conditions for ab-
sorbing boundaries in elastic wave equations were introduced by Clayton &
Engquist [1977].
Komatitsch et al. [1999] and Komatitsch & Tromp [1999] use a first or-
der approximation based on a formulation by Stacey [1988] for the absorbing
boundaries. For one-dimensional wave propagation it is rather simple, relating
traction to velocity in the following way:

σ
Γ

= ρ
Γ

α u̇ (2.38)

α is the wave speed.
As it only applies to the two corner nodes the absorbing conditions are imple-
mented by:

σ(1) = ρ(1) α(1) u̇(1)

σ(ng) = ρ(ng) α(ng) u̇(ng) (2.39)

30 Chapter 2. Basic Concepts in 1-D

The stresses obtained are simply added to the stresses acting on the nodes due
to internal forces. See Section 2.2.8 for an explanation on how these stresses and
internal forces are computed.

In the last paragraphs it became clear that most boundary conditions can be
implemented using the calculation of forces at the nodes. This is another reason
why this approach is the preferable one. Using the stiffness matrix would result
in many more complications.

2.1.10 The SEM with Chebychev polynomials

In the last section of the theoretical introduction to the simulation of 1-D
problems, the implementations of Chebychev polynomials, used in the early
stages of the SEM, will be explained in short. This is done for several purposes:
on one hand it is considered very important for a complete overview of the
method. On the other hand it shows the improvement which the method
experienced due to the usage of Lagrange polynomials and in addition it is
meant to honour the work of the people first using this method, like Pat-
era [1984]; Maday & Patera [1989]; Priolo & Seriani [1991]; Seriani &
Priolo [1994]. A short treatise of the history of SEM can be found in Chapter 1.

Most of the concepts for the SEM with Chebychev polynomials are the same as
with Lagrange polynomials as there are the domain decomposition, the mapping
and the calculations of derivatives under an integral using the Jacobi-Matrix. The
functions are also interpolated by a piecewise polynomial approximation using an
Lagrangian interpolation on each element as in Patera [1984] (compare also to
Eq. 2.23):

ue(ξ) ≈
N∑

i=0

ue(ξi) ϕN
i (ξ) (2.40)

ϕN
i are Lagrangian interpolators (polynomials of degree N) defined on [−1, 1],

satisfying the relation ϕi(ξj) = δij. In contrast to the Lagrange polynomials the
calculation of these interpolating functions is more complex. The polynomials
ϕN

i are defined using Chebychev polynomials Tk up to order N :

ϕN
i (ξ) =

2

N

N∑

k=0

1

ci ck

· Tk(ξi)Tk(ξ) (2.41)

with

ci =

{
1 for i 6= 0, N

2 for i = 0, N

2.1. Mathematical Formulation of SEM 31

The Chebychev polynomials are defined in the following way (see Bronstein
et al. [1999], page 918):

Tk(x) = cos(k arccos x) (2.42)

Another frequently used definition is (see Patera [1984]):

Tk(cosθ) = cos kθ (2.43)

The Chebychev polynomials can also be computed using a recursion formula (see
Priolo & Seriani [1991]):

Tk+1(x) = 2xTk(x)− Tk−1(x) (2.44)

with T0(x) = 1 and T1(x) = x.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Chebychev Polynomials of order N =
0, . . . , 5.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Chebychev Polynomials of order N =
6, 7, 8.

Figure 2.6: Chebychev Polynomials up to degree N = 8 on the interval [−1, 1].

The interpolating points ξi are chosen as the Chebychev Gauss-Lobatto quadra-
ture (CGL) points which can be computed using:

ξi = cos
(π i

N

)
for j = 0, . . . , N (2.45)

The resulting interpolating polynomials ϕi look very similar to the Lagrange
polynomials. This is because the collocation points of the different quadratures
do not lie very far from each other as shown in Table 2.1. One of the differences
is that the polynomials ϕi can have values higher than 1 in the interval [−1, 1].
This is shown in Figure 2.7(a), where the violett and green polynomial exceed

32 Chapter 2. Basic Concepts in 1-D

GLL points CGL points
± 0.285231531 ± 0.309016994
± 0.765055299 ± 0.809016994

± 1 ± 1

Table 2.1: Comparison of the collocation nodes of the Gauss-Lobatto-Legendre
quadrature (left) and the Chebychev Gauss-Lobatto quadrature (right) for order
N = 5.

the value of 1 in the vicinity of the collocation point ξi = 0.809016994. Also
shown are the Lagrange polynomials for comparison. In Figure 2.7(d) only one
polynomial of each kind is plotted to illustrate the small but obvious difference
of the graphs.
The major difference of the Chebychev-SEM compared to the Lagrange-SEM is
that in deriving the elemental matrices, the integrations occuring in the varia-
tional formulation are not evaluated by a discrete numerical quadrature. This
leads to elemental mass matrices that are fully occupied (i.e. all matrix elements
are non-zero). In this case the elemental mass matrices for a homogenous model
and elements of same length get the following form (Priolo & Seriani [1991]):

Me
ij = ρ

∆e

2

4

N2 ci cj

N∑

k,l=0

(1

ck cl

· Tk(ξi)Tl(ξj)

1∫

−1

Tk(ξ)Tl(ξ) dξ
)

(2.46)

The value ∆e
2

= J is the Jacobian for elements of same length (see page 20). The
evaluation of the integral over both Chebychev polynomials Tk(ξ)Tl(ξ) leads to:

1∫

−1

Tk(ξ)Tl(ξ) dξ =

{
0 for k + l odd

1
1−(k+l)2

+ 1
1−(k−l)2

for k + l even
(2.47)

For the same model, the elemental stiffness matrices will look like:

Ke
ij =

∆e

2

4

∆e2

4

N2 ci cj

N∑

k,l=0

(1

ck cl

· Tk(ξi)Tl(ξj)

1∫

−1

Tk
′(ξ)Tl

′(ξ) dξ
)

(2.48)

The additional term 4
∆e2 represents the Jacobi-Matrix of the inverse mapping for

this case. Evaluating the integral over the two derivatives T ′
k(ξ)T

′
l (ξ) yields:

1∫

−1

Tk
′(ξ)Tl

′(ξ) dξ =

{
0 for k + l odd
k l
2
(H|(k−l)/2| −H|(k+l)/2|) for k + l even

(2.49)

2.1. Mathematical Formulation of SEM 33

with

Hn =

{
0 for n = 0

−4
∑n

r=1
1

2r−1
for n ≥ 1

(2.50)

The drawback of the Chebychev SEM is the non-diagonal structure of the
global mass matrix. Its inversion is therefore no longer trivial and the numerical
scheme for integration in time gets more complicated. The explicit FD scheme
in Equation (2.34) can no longer be used. Priolo & Seriani [1991] use and
Newmark-type central difference scheme, for 1-D simulations. This is an implicit
two-step scheme, conditionally stable and second order accurate.

Following this theoretical introduction the focus in the next section will be on
the implementation of these mathematical constructs into the program code.
Furthermore some more definitions, like those of the connectivity-matrix and the
assembly process will be given, which were omitted so far. In these explanations
the same order is used, in which the several stages have to be carried out in the
program. Thus it is possible to successively understand the flowpath of the code.
Several topics concerning programming as for example the initialisation, reading
of parameters into the program or the construction of certain source signals are
left out in this thesis as they are not relevant for understanding the SEM. Neither
will the FD scheme for the integration in the time domain be explained in more
detail. Information on these topics can be found in the standard literature on
numerical methods for differential equations.
The parameter file of the 1-D Fortran code is given in appendix A.2, where
it is pointed out which parameters can be changed in the program and why this
may be of relevance.

34 Chapter 2. Basic Concepts in 1-D

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Lagrangian interpolators of order N =
5 based on Chebychev polynomials.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Lagrange polynomials of degree N =
5.

−1 0 1
−0.1

0

0.1

(c) Difference between corresponding
Lagrange-Chebychev interpolators and
Lagrange polynomials (both of order
N = 5).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) Lagrange polynomial `56 (red) and
Lagrange-Chebychev interpolator ϕ5

6

(blue).

Figure 2.7: Comparison of interpolating polynomials: (a) All six Lagrangian
interpolators of order N = 5 based on Chebychev polynomials. (b) Lagrange
polynomials of degree N = 5. (c) Difference between corresponding Lagrange-
Chebychev interpolators and Lagrange polynomials (both of order N = 5). (d)
Small difference between the Lagrange polynomial `5

6 (red) and the Lagrangian
interpolator derived with Chebychev polynomials. ϕ5

6 (blue).

2.2. Implementation in the Program Code 35

2.2 The Implementation of the Theoretical

Formulations in the Program Code

2.2.1 Structure of the Program

• Initialization

• Reading of input files:

– Parameter file (for details see description in Appendix A.2, page 137)

– meshfile (if irregular mesh is used)

– density and mu data files

• Preparations for the calculation of the stiffness and mass matrix

– Calculation of collocation points and integration weights

– Calculation of the first derivative of the Lagrange polynomials at the
collocation points

• Calculation of shape functions

• Calculation of Jacobi-Matrices and Jacobians

• Generation of a non-equidistant x-vector for run-time plotting of the dis-
placement field (Gauss-Lobatto-Legendre (GLL) points of each element are
not evenly distributed inside the interval [-1,1])

• Calculation of the time step dt depending on the stability criterion

• Generation of the source signal (e.g. delta-peak or ricker-wavelet) or
reading of initial displacement field data

• Calculation of the elemental stiffness matrices (skipped, if calculation of
forces in time loop is preferred)

• Calculation of the elemental mass matrices

• Generation of the “connectivity-matrix” for the 1-D case

• Assembly of the global matrices M and if used K

• setup of receivers

• Inversion of the mass-matrix

• Time-Loop: Integration in the time domain (explicit scheme)

36 Chapter 2. Basic Concepts in 1-D

– Calculation of forces (if used)

– implementation of boundary conditions

– Calculation of displacement uti+1
at the next time step

• writing seismograms to output files

2.2.2 Preparations for the Calculation of the Stiffness and
Mass Matrix

These Preparations comprise mainly the calculation of the appropriate collocation
points ξi in the interval [−1, 1] belonging to the associated order N and, based
on this, the computation of the derivation of the Lagrange polynomials at the
above gridnodes. Moreover the weights ωi needed for the GLL quadrature are
determined.

Calculation of the Collocation Points and Quadrature Weights

The collocation points of the GLL quadrature, used for the numerical integration
and also for the Lagrange type interpolation, are defined as the roots of the first
derivative of a Legendre polynomial PN of degree N (Abramowitz & Stegun
[1984]). The Definition of the Legendre polynomials can be found in Bronstein
et al. [1999], page 507:

PN(x) =
1

2NN !

dN

dξN
(ξ2 − 1)N (2.51)

The weights of the Gauss-Lobatto-Legendre quadrature are obtained by
(Abramowitz & Stegun [1984]):

ωi =
2

N(N + 1)[PN(ξi)]
2 (ξi 6= ±1)

ωi =
2

N(N + 1)
(ξi = ±1) (2.52)

In the program code the Legendre polynomials needed for the calculation of the
collocation points and these points themselves are computed by the use of special
Fortran subroutines published by Funaro [1993]. Short descriptions of the
underlying mathematics together with the subroutine code can be found there.
The calculation of the Legendre polynomials in these subroutines is done using
recursion formulae, which can also be obtained from Bronstein et al. [1999],

2.2. Implementation in the Program Code 37

where they have the following form:

P0(x) = 1

P1(x) = x (2.53)

Pn(x) =
1

n
[(2n− 1) x Pn−1(x)− (n− 1)Pn−2(x)] n ≥ 2

P
′
0 (x) = 0

P
′
1 (x) = 1 (2.54)

P
′
n(x) =

1

n
[(2n− 1)(x P ′

n−1(x) + Pn−1(x))− (n− 1)P ′
n−2(x)] n ≥ 2

P ′′
0 (x) = 0

P ′′
1 (x) = 0 (2.55)

P ′′
n (x) =

1

n
[(2n− 1)(x P ′′

n−1(x) + 2P ′
n−1(x))− (n− 1)P ′′

n−2(x)] n ≥ 2

Calculation of the First Derivative of the Lagrange Polynomials at the
Collocation Points

The calculation of the first derivatives of the Lagrange polynomials is also done
with another subroutine of Funaro [1993], which uses the results of the above
subroutine for Legendre polynomials. In this routine the derivates of all N + 1
Lagrange polynomials `i are only calculated at the points of interpolation ξi,
which then are stored in a matrix in such a way that in each column i are all the
values of the derivative of one particular polynomial i at all nodes. This means
that the number of the columns is equivalent to the index of the polynomial. The
derivatives are obtained by applying the following formula (see Funaro [1993]):

`
′
(ξi) =

N∑
j=1

d̃
(1)

ij `(ξj) (2.56)

with

d̃
(1)

ij =

−1
4
N(N + 1) if i = j = 0

PN (ξi)
PN (ξj)

1
ξi−ξj

if 0 ≤ i ≤ N, 0 ≤ j ≤ N, i 6= j

0 if 1 ≤ i = j ≤ N − 1

1
4
N(N + 1) if i = j = N

(2.57)

38 Chapter 2. Basic Concepts in 1-D

Now we have accomplished all necessary preparations we need on the one hand to
construct an adequate x-vector, which we will use to plot the simulated displace-
ments during run-time. On the other hand we make use of these calculations
when generating the elemental stiffness and mass matrices.

2.2.3 Implementation of the Domain Decomposition and
Definition of the Mesh in 1-D

To allow for the fact that the integration points are not evenly spaced inside each
element, one will have to generate an appropriate x-vector, i.e. the distances
ξi+1−ξi repeat every N elements of the vector (ne times). This means appending
element after element with all its GLL nodes. Figure 2.8 shows an example of
such a vector with N = 8 and ne = 3:

ne = 1 ne = 3ne = 2

0 1 2 3 4 5 6 7 8

Figure 2.8: Illustration of a x-vector with non equidistant collocation points of
the Gauss-Lobatto-Legendre quadratur for N = 8. Three elements are shown
here.

2.2.4 Calculation of Time Step dt using the Stability Cri-
terion

Corresponding to Capdeville [2000] the stability criterion of the SEM for the
one-dimensional wave propagation in a homogeneous medium is:

dt ≤ C
dxmin

vmax

= C
dxmin

α
α is the wave velocity in 1-D (2.58)

Here dxmin is the smallest distance (physical coordinates) between two points of
the mesh. When using elements with different lengths this corresponds to the
difference between nodes i = 0 and i = 1 of the smallest element as the distances
between collocation points of one element get smaller at the border. C is the
Courant number, which was determined empirically. Capdeville [2000] gives a
value of around 0.84 for 1-D. This value could be verified with the code of the
present work.

2.2.5 Getting the Elemental Stiffness and Mass Matrices

We have seen that one obtains two matrices Ke und Me of the form (N +1, N +1)
for all ne elements. These matrices contain all the contributions of the collo-

2.2. Implementation in the Program Code 39

cation points to the corresponding global matrices. The derivatives `
′
i(ξj) of

the Lagrange interpolators needed for the calculation of the elemental stiffness
matrix have already been computed in Section 2.2.2. The elements Ke

ij of the
elemental stiffness matrices then are the sum over the integrating points of two
derivatives i und j multiplied by the corresponding weights an the inverse of the
Jacobi-Matrix elements (see Eq. 2.30).

It was shown in the previous section (Sec. 2.1) that the property of the Lagrange
polynomials of Equation (2.22) leads to the very important diagonal structure of
the elemental mass matrices. Therefore the inversion of the global mass matrix,
which is thus also diagonal, is now very easy. Corresponding to Equation (2.28),
the diagonal elements M e

ii of the elemental mass matrix contain only the weight
ωi of the i-th collocation point multiplied by the associated Jacobian Ji and
density ρi. As mentioned earlier only the non-zero elements of the mass matrix
are stored in a vector, which affects the mathematical matrix multiplication.
This multiplication is easily done in Fortran, which performs an elementwise
multiplication when using the usual ∗-operator (in contrast to matlab). The
result of this ∗-operation is therefore a vector itself. An equivalent vector would
be obtained by a real matrix - vector multiplication (in the mathematical sense)
using a matrix in which only the diagonal elements are 6= 0. This is exactly the
case with the mass matrix M and similarily M−1. Doing so leads to much lower
memory requirements of the order of 40 to 50 % in 1-D simulations, which may
seem uninteresting in this case but is absolutely inevitable for 3-D calculations.

2.2.6 Generation of the Connectivity Matrix in the 1-D
Case for the Assembly of the Global System

In this section the generation and use of the connectivity-matrix is demonstrated,
which is the key feature for the assembly of global variables for the simple 1-D
case.

The Connectivity-Matrix

The connectivity-matrix contains all information of the 1-D grid concerning the
association of the global nodes to the elements. This can be regarded as a kind
of transformation of the element and local numbering to a complete global num-
bering of the points of the grid. The connectivity-matrix is structured in a way,
that the index of columns equals the index of the associated element and the
corresponding rows are filled with the global number of the collocation points.
In the global numbering the first node is denoted by 1 (contrary to the local
numbering of the GLL points inside the elements, which starts from 0). In the

40 Chapter 2. Basic Concepts in 1-D

easiest case of N = 1 the connectivity-matrix will look like:

C =

(
1 2 . . . ng − 1
2 3 . . . ng

)
(2.59)

ng is the overall number of global points in the mesh: ng = N · ne + 1

When the overall number of Spectral Elements is kept the same but a higher
order of the interpolating functions is used, the number of columns remains the
same while the number of rows becomes N +1. Using for example N = 5, C will
become:

C =

1 6 [11 = (3− 1)N + 1 . . . [(ne − 1)N + 1]
2 7 = (j − 1)N + 1] [(ne − 1)N + 2]
3 8

4 9
...

5 10
6 [11 = 2N + 1] [(ne − 1)N + N + 1]

(2.60)

2.2.7 Assembly of the Global Linear System using the
Stiffness Matrix

After the connectivity-matrix is generated the information stored in its elements
can be used to assemble the elemental vectors and matrices. This is done by
assigning the elements of the elemental matrices (resp. vectors) to the elements of
the global fields in a convenient manner. The correlation can either be expressed
in a program assignment (see Eq. 2.61) or in words as done in Schwarz [1984]:

,,Ganz allgemein beschreibt sich dieser Kompilationsprozess wie folgt:
Steht in der Liste der Nummern der Knotenvariablen an der Position
j die Nummer l und an der Position k die Nummer m, so ist beispiels-
weise der Wert des Elementes k

(e)
jk der Elementsteifigkeitsmatrix Ke

zum Element klm der Gesamtsteifigkeitsmatrix K zu addieren. Ferner
ist die Komponente b

(e)
j des Elementvektors be zur Komponente bl

des Gesamtvektors b zu addieren.“

2.2. Implementation in the Program Code 41

“In general this compilation can be described as follows:
If the list of node-variable numbers contains the number l at position
j and the number m at position k then for example the value of the
element k

(e)
jk of the elemental stiffness matrix Ke has to be added to the

element klm of the global stiffness matrix K. Furthermore, the compo-
nent b

(e)
j of the elemental vector be has to be added to the component

bl of the global vector b.”

In the program code this relationship will have the following form which should be
read as an program assignement rather than a correct mathematical statement:

K(Cki, Cji) = K(Cki, Cji) + K
(i)
kj

M(Cji) = M(Cji) + M
(i)
j (2.61)

i is the index of element numbering, j and k are indices of the order N .

The first relation appears in three loops of indices i, j, k with i = 1, . . . , ne and
j, k = 0, . . . , N . For the second one only two loops are needed with i and j being
the same as above.
A possible way of expressing this relation in mathematically correct form is shown
below:

K(Cki, Cji) = K
(i)
kj +

ne∑

l=1

N∑
m=0

N∑
n=0

K(l)
mn δCkiCml

δCjiCnl
(2.62)

M(Cji) = M
(i)
j +

ne∑

l=1

N∑

k=0

M
(l)
k δCjiCkl

(2.63)

∀ i = 0, . . . , N ; j = 1, . . . , ne

In Sections 2.1.5 and 2.1.6 it was pointed out that the elemental matrices Me

and Ke have the form (N + 1, N + 1), where only the diagonal elements of Me

are non-zero. The process of assembling the global fields now leads to a structure
of (ng, ng) matrices. In the case of the mass matrix being stored in a vector, the
second relation of Equation (2.61) applies. In order to better understand this

42 Chapter 2. Basic Concepts in 1-D

important procedure it is illustrated in pictorial form for a simple case of N = 2
and ne = 3 in Equation (2.64):

M =

?
?
?

+

◦
◦
◦

+

¦
¦
¦

=

?
?

? + ◦
◦
◦+ ¦
¦
¦

(2.64)

The elemental vectors appear to be expanded virtually to the length ng of the
global ones. From this it can clearly be seen that the elements M(3) and M(5)
of the global mass “vector” contain the sum of the values of the corresponding
spectral elements. These matrix elements thus comprise the contributions of two
spectral elements as they are associated with the nodes at the border of these
elements (i.e. these nodes are shared between two elements).
The assembly of the global stiffness matrix K for the same N and ne as above
then gives:

K =

K
(1)
1,1 K

(1)
1,2 K

(1)
1,3

K
(1)
2,1 K

(1)
2,2 K

(1)
2,3 0

K
(1)
3,1 K

(1)
3,2

[

K
(1)
3,3 + K

(2)
1,1

]

K
(2)
1,2 K

(2)
1,3

K
(2)
2,1 K

(2)
2,2 K

(2)
2,3

K
(2)
3,1 K

(2)
3,2

[

K
(2)
3,3 + K

(3)
1,1

]

K
(3)
1,2 K

(3)
1,3

0 K
(3)
2,1 K

(3)
2,2 K

(3)
2,3

K
(3)
3,1 K

(3)
3,2 K

(3)
3,3

(2.65)

The stiffness matrix therefore has a certain bandwith, which is 2 · N + 1, with
some additional elements being zero within this band. A very good introduction
to the assembly and connectivity is presented in the first chapter of the book on
FEM by Zienkiewicz & Taylor [2000].

The Stiffness Matrix in practical use

We can see from Equation (2.65) that only a small band around the diagonal of
the global stiffness matrix is occupied and that most of the matrix elements are
0. Therefore it would be very awkward to store all of those latter elements in
the computer memory which are not of any use in the computations as usually
the number of elements by far exceeds the order N of interpolating polynomials.
In addition, most of the computations concerning Equation (2.32) would include
multiplications with 0, which is a nonacceptable waste of CPU resources. In

2.2. Implementation in the Program Code 43

order to circumvent this problem we have to find a way of reducing the memory
requirements of the stiffness matrix whithout changing the calculations.
One way of reducing the memory is to compress the rows of the stiffness matrix.
From Equation (2.32) we see that every row of the stiffness matrix is multiplied
with the column vector u. fi is hereby the i-th element of the vector of internal
forces finternal (the same applies to Eq. 2.68).

fi =

ng∑
j=1

Kij uj , ∀ i = 1, . . . , ng (2.66)

i is the index of rows, j is the index of columns.

Thus every line of the stiffness matrix is independent from the others and can be
seen as a single row vector.
As the elements containing zero do not change the result of this vector multi-
plication we can omit most of them in every row and reduce those to the size
2 ·N + 1, which is the bandwith of the stiffness matrix. Only a few zeros remain
in the truncated matrix.

K=

. . .

K
(i−1)
1,1 K

(i−1)
1,2 K

(i−1)
1,3

K
(i−1)
2,1 K

(i−1)
2,2 K

(i−1)
2,3 0

K
(i−1)
3,1 K

(i−1)
3,2 [K

(i−1)
3,3 + K

(i)
1,1] K

(i)
1,2 K

(i)
1,3

←− K
(i)
2,1 K

(i)
2,2 K

(i)
2,3

←− K
(i)
3,1 K

(i)
3,2 [K

(i)
3,3 + K

(i+1)
1,1] K

(i+1)
1,2 K

(i+1)
1,3

0 ←− K
(i+1)
2,1 K

(i+1)
2,2 K

(i+1)
2,3

←− K
(i+1)
3,1 K

(i+1)
3,2 K

(i+1)
3,3

. . .

‖∨

44 Chapter 2. Basic Concepts in 1-D

K =

...

K
(i−1)
1,1 K

(i−1)
1,2 K

(i−1)
1,3 0 0

0 K
(i−1)
2,1 K

(i−1)
2,2 K

(i−1)
2,3 0

K
(i−1)
3,1 K

(i−1)
3,2 [K

(i−1)
3,3 + K

(i)
1,1] K

(i)
1,2 K

(i)
1,3

0 K
(i)
2,1 K

(i)
2,2 K

(i)
2,3 0

K
(i)
3,1 K

(i)
3,2 [K

(i)
3,3 + K

(i+1)
1,1] K

(i+1)
1,2 K

(i+1)
1,3

0 K
(i+1)
2,1 K

(i+1)
2,2 K

(i+1)
2,3 0

0 0 K
(i+1)
3,1 K

(i+1)
3,2 K

(i+1)
3,3

...

(2.67)

The last thing we have to do now is to perform the multiplication with the dis-
placement vector in a correct manner, i.e. multiplying the rows of the new
stiffness matrix with those elements of u given by the full matrix-vector multi-
plication of Equation (2.32).

fi =
N∑

j=−N

Ki(j+N) u(i+j) , ∀ i = 1, . . . , ng (2.68)

2.2.8 Assembly Process by Calculation of total Forces in-
stead of using the Stiffness Matrix

As explained in Section 2.1.7, the easier way to obtain the global matrix equation
is to compute the forces acting on every node of the elements and later summing
these contributions on nodes that belong to more than one element. This latter
stage is the same as the assembly of the vector containing the global mass matrix
elements, which was discussed in the previous section.

At first only the interior forces of the medium are considered, omitting sources,
which will later be added to the total forces acting on the grid points.
According to the weak formulation for one element (Eq. 2.11) the internal forces
inside one element are computed by the second integral of this equation. Previ-
ously, this led to the stiffness matrix. As we want to obtain forces, we start to
derive the stresses acting in the element. Therefore we have to get the strain at
all the collocation points of one element at first:

∂ui

∂x
=

∂ui

∂ξ

∂ξi

∂x

=
∑

j

uj `
′
j(ξi) · J−1

i (2.69)

2.2. Implementation in the Program Code 45

Here we have to account for the mapping again (the inverse mapping is applied)
by multiplying with the Jacobi-Matrix of the transformation from global to local
coordinates. In addition, the interpolation is done using the well-known Lagrange
interpolation scheme. The values of the displacement at the points of interpola-
tion are derived using the connectivity-matrix. The displacement u at point ξi of
element j is obtained using:

uj(ξi) = u(Cij) (2.70)

Now, by applying Hooke’s Law, we can get the stress at one node:

σi = µi
∂ui

∂x
(2.71)

To finally determine the internal force we have to insert the stress into the integral,
interpolate the test function v, again apply the inverse mapping, and account for
this by multiplication with J−1

k . Then, integrating numerically by means of the
GLL integration quadraturei leads to:

f e
int =

∫

Ωe

∇v σ

=

∫ 1

−1

∇v σ J ∂ξ

=
∑

k

[
∑

j

`
′
j(ξk)]

iJk σk Jk

=
∑

j

∑

k

`
′
j(ξk)

iJk σk Jk (2.72)

And, as the interpolation scheme for the force at one node j gives

f(ξj) = fj =
∑

i

fiδij =
∑

i

fi `i(ξj) , (2.73)

we receive the expression for the forces at each node of one element as:

fint(ξj) =
∑

k

`
′
j(ξk)

iJk σk Jk, j = 0, . . . , N (2.74)

The stresses are computed separately, despite of being evaluated under the sum
over k in Equation (2.74). Thus the loops used to calculate the sums over the
N + 1 collocation points are not nested.

46 Chapter 2. Basic Concepts in 1-D

External Forces: Contributions of the Sources

For the calculation of the global force vector, we already determined the internal
forces. Now we just have to add the forces of external excitations of the medium.
We only have to identify the GLL-points on which we impose those sources. To
do so, we test which elements contain sources and look for the closest collocation
point. Then without further normalisation we can add the force associated to
the source location to the internal forces at this collocation point. At the end we
have the total forces at all nodes of each element.

f j
total(ξi) = f j

int(ξi)+ f j
source(ξi) δsej δsi , ∀ i = 0, . . . , N ; j = 1, . . . , ne (2.75)

The two Kronecker-deltas symbolize the fact that only elements containing
sources (i.e element j is an “source-element”, j ∈ se) and only those GLL-points
closest to the source location (i = s, where s denotes the GLL-point correspond-
ing to the source) have to be considered. It is obvious, that this is not preferable
as we take a loss of accuracy in locating the source. Another possibilty of im-
plementing sources is to use stresses applied on the medium. These stresses only
have to be added to the internal stresses of the medium. The resulting stresses
then are treated as shown in Equation (2.72). This is the most convenient way
for 3-D applications, as will be shown in Section 3.1.8.

Construction of the Global Force Vector f

The elements of the global force vector can then be maintained by summing
the forces computed on the elements according to the information stored in the
connectivity-matrix. We get:

f(Cij) = f j(ξi)+
ne∑

l=1

N∑

k=0

f l(ξk) δCijCkl
, ∀ i = 0, . . . , N ; j = 1, . . . , ne (2.76)

This means that only those forces are summed where Cij = Ckl. After having
assembled all variables and fields needed in the global linear system we can solve
Equation (2.33), the reduced version of Equation (2.32), for the displacement u:

Mü = ftotal

uti+1
= dt2 (M−1 ftotal) + 2uti − uti−1

(2.77)

The calculation of u in each time step thus comprises two steps, in contrast to the
formulation using the stiffness matrix. First calculating the forces and afterwards
multiplying by the mass matrix. Although the latter operation only consist of

2.2. Implementation in the Program Code 47

one multiplication per time step3, the first step is computationally expensive. All
operations together take more CPU time than the calculations using the stiffness
matrix. Thus, for 1-D applications the latter one is preferable, but as said before,
for 2- or 3-D simulations it is no longer convenient.

3This is due to the diagonal mass matrix

Chapter 3

The Spectral Element Method
for 3-D Seismic Wave
Propagation

In Chapter 2 the reader was familiarized with the ideas of the SEM by introduc-
ing the theory and concepts of the method for one-dimensional wave propagation
problems. As mentioned earlier, these considerations for 1-D can more or less be
translated one-by-one to 3-D applications. Nevertheless, it is clear that we need
some extensions to compensate for the additional dimensions. In this context the
tensorisation of the interpolation as well as more complex meshing algorithms
have to be mentioned. All this will be explained in this chapter by taking the
same approach as in the 1-D case, but in a shorter and condensed way. Topics
that do not change from 1-D to 3-D will also be repeated as some readers may
want to read only this chapter about 3-D simulations.
In Section 3.1.2 some examples of meshes for 2- and 3-D models are shown,
which were published in the last 10 years. In this way the reader can get an idea
of the present state of the art. The SEM for 2-D simulations is self explanatory
within this chapter, but the most important issues will additionally be presented
for completeness and sometimes it will be more convenient to show figures of
two-dimensional elements instead of three-dimensional ones.

Again, the content of the current chapter is mainly based on publications by
Komatitsch [1997]; Komatitsch & Tromp [1999, 2002a,b]; Komatitsch &
Vilotte [1998], but some others will be mentioned in addition as for example
Komatitsch et al. [2001]. The latter discusses a special kind of spectral ele-
ments, with triangular shape. In the theory of the SEM for multidimensional
problems we will recognise, that the method is originally designed for hexagonal
elements.

49

50 Chapter 3. The SEM for 3-D Seismic Wave Propagation

3.1 The Mathematical Formulation of the Spec-

tral Element Method in 3-D

Definition of the Mathematical Problem

As in the previous chapter we start with the definition of the mathematical prob-
lem we want to solve. Therefore we state the elastodynamic equation for three-
dimensional wave propagation (after Udias [1999]):

ρ(x) · ∂2

∂t2
u(x, t) − ∇ · σ(x, t) = f(x, t) (3.1)

Attenuation and anisotropy are not included here, but they both pose no problem
to the SEM as stated in Chapter 2.
The individual terms are all volume forces as described in Equation (2.2). This
formula can also be expressed in a shorter way using the sum convention over
repeated indices (see Udias [1999] or Aki & Richards [2002]):

ρ
∂2ui

∂t2
− ∂σij

∂xj

= fi

ρ üi − σij, j = fi ∀ i = 1, 2, 3 (3.2)

Equation (3.2) is therefore written separately for all components of u. The comma
denotes a spatial derivative in the direction given by the following index.
The components of the stress tensor σij can be computed using the general form
of Hooke’s Law:

σij = cijkl εkl

= cijkl uk, l (3.3)

In the same way as in Chapter 2, we will derive the variational form of the wave
equation with three spatial coordinates. From that we can formulate the SEM by
first dividing the Model Domain Ωnd

1 into hexagonal elements (meshing), then
mapping them onto a standard interval, afterwards determining the matrices on
elemental level and later for the global system (in the course of the assembly).

3.1.1 The Weak Formulation of the Elastodynamic Equa-
tion in 3-D

As we need the integrated form of the wave equation we start by multiplying
Equation (3.1) with a time-independent test function v(x), which is now also a

1nd is the number of dimensions and Ωnd
is here defined as the nd tensor product of one-

dimensional domains Ω: Ωnd
= Ω ⊗ Ω ⊗ Ω for nd = 3; ⊗ is the tensor product, for details see

Bronstein et al. [1999], page 263

3.1. Mathematical Formulation of the SEM in 3-D 51

vector. In the present formulation of Equation (3.1) the following considerations
hold for any elastic medium including inhomogeneity and anisotropy. When
attenuation shall be included the stresses have to be computed in a different way
(see Komatitsch & Tromp [1999]). After multiplication with v we integrate
over the whole domain and get:

∫

Ωnd

v ρ ü dx −
∫

Ωnd

v ∇ · σ dx =

∫

Ωnd

v f dx (3.4)

u, f , and σ are considered to depend on x and t in the following without further
explicit declaration. v is implicitly considered to depent on x and ρ only on t.
In addition Ωnd

will be denoted Ω from now on throughout the whole chapter.

If we now integrate the second term on the left side of Equation (2.6) by parts
and denote the boundary of Ω by Γ, we obtain:

∫

Ω

ρ v ü dx −
∫

Γ

v ∇ · σ dx +

∫

Ω

∇v σ dx =

∫

Ω

v f dx (3.5)

Now we apply the same stress conditions as we used for 1-D problems, namely the
free surface or Neumann-conditions with stresses being zero at the boundaries:

σΓ = 0 (3.6)

Thus the integral over Γ vanishes, which leads to the final form of the weak
formulation which we will use in the following:

∫

Ω

v ü dx +

∫

Ω

∇v σ dx =

∫

Ω

v f dx (3.7)

The application of other boundary conditions was shown for the 1-D case in
Section 2.1.9, where also some references to papers on this topic were given.
Details on boundary conditions for the 3-D case will not be presented in the
course of this thesis.

Again we have the basis for the SEM with which we can start by first meshing
the model. The domain decomposition is shown in the next subsection.

3.1.2 Domain Decomposition and Mapping Functions

As mentioned earlier, the model domain has to be divided into ne elements.
The idea behind methods using elements is to approximate the model as good
as possible by first defining several subregions. These subregions may be
for example a sediment basin overlaying some bedrock, or in a whole Earth
model there may be the regions crust, mantle, outer core and inner core (see
Komatitsch & Tromp [2002a]). This leads to interfaces inside the model that

52 Chapter 3. The SEM for 3-D Seismic Wave Propagation

exactly represent the interfaces in the geological model. When now discretising
each subregion, the interfaces as well as the free surface (with topography) or
artifical boundaries (where absorbing boundary conditions shall be applied) are
represented by the faces of elements, which can be curved. How to obtain these
curvatures and why the SEM almost exclusively uses hexagonal elements will be
explained in the following.

Figure 3.1 illustrates the idea of meshing a 2-D structure with curved interfaces.
In the middle layer a special kind of size doubling is used to ensure a conforming
mesh. This property is important to obtain a diagonal mass matrix in 2- and
3-D SEM simulations. This doubling algorithm was used by Komatitsch &
Tromp [2002a,b] to mesh the entire globe.
Figure 3.3 shows a simple example of 3-D meshing of a cube divided into several
differently shaped hexaedral elements. Figures 3.4 and 3.5 show several examples
of meshing geological structures.

Figure 3.1: Two dimensional mesh of curved structures using size doubling in the
middle layer.

Figure 3.2: A “cubed sphere”
mesh of the globe. (Taken
from Komatitsch & Tromp
[2002a]).

Figure 3.3: Illustration of a
three-dimensional meshing of a
cube. (Taken from Müller-
Hannemann [2000]).

3.1. Mathematical Formulation of the SEM in 3-D 53

Figure 3.4: Meshing of geological structures in three-dimensional models based
on hexaedra. (Taken from Gable & Cherry [2000]).

Figure 3.5: Approximation of curved topography by hexaedrons. (Taken from
Komatitsch et al. [2003a]).

54 Chapter 3. The SEM for 3-D Seismic Wave Propagation

After dividing the model domain into subdomains Ωe, the integrations of Equa-
tion (3.7) can be performed independently on each of these subdomains. Thus
we can state the weak formulation separately for all ne elements.

∫

Ωe

v ü dx +

∫

Ωe

∇v µ ∇u dx =

∫

Ωe

v f dx (3.8)

for e = 1, ..., ne.

Mapping Functions - Transformation of Physical Coordinates onto a
Standard Interval

In Chapter 2 we proceeded by defining a coordinate transformation for each
element in such way that all elements had locally defined coordinates ξ : ξ ∈
[−1, 1] = Λ. This mapping allowed us to handle all subdomains in the same
manner, which simplified calculations a lot.
Doing the same in 3-D is also convenient and straight forward. Each element
domain Ωe is mapped onto a three-dimensional reference cube Λnd

= Λ = Λ ⊗
Λ⊗Λ, where Λ is again the one-dimensional standard interval [−1, 1]. In the most
general case the mapping functions F e : Λ→ Ωe of the elements are defined by:

F e(ξ) = xe(ξ) =
na∑

a=1

Na(ξ) xe
a

xe(ξ, η, ζ) =
na∑

a=1

Na(ξ, η, ζ) xe
a (3.9)

xe
a are the na anchor points of the e-th element. Depending on the choice of

the order N of Lagrange polynomials, a 3-D element can either contain 8 nodes
(N = 1) at each of its corners or 27 nodes (N = 2) (see Fig. 3.8). The first have
straight edges and faces, whereas the latter can have curved ones.
Sometimes, when using curved elements, it is possible to omit the anchor nodes in
the middle of faces (white quadrangles in Fig. 3.8) and the middle of the volume
(white triangle in Fig. 3.8).
Figure 3.6 illustrates the mapping considering as an example one straight and one
curved 2-D element, which are both transferred to the reference square [−1, 1]⊗
[−1, 1], only the number of anchor points is differing.

The shape functions Na are nd-products of Lagrangian polynomials of degree
either N = 1 for straight edged elements or N = 2 for curved elements. These
polynomials were shown in Figure 2.2 and 2.3.
The shape functions for a 2-D four node element based on Lagrange polynomials

3.1. Mathematical Formulation of the SEM in 3-D 55

1−1

1

0

−1

1−1

1

0

−1

Figure 3.6: Mapping of 2-D elements on the reference square Ω2 = [−1, 1]⊗[−1, 1].
Left: straight element with four anchor nodes. Right: curved element with nine
anchor nodes.

of degree N = 1 are as follows:

N1(ξ, η) = `1
0(ξ) `1

0(η) N2(ξ, η) = `1
1(ξ) `1

0(η)

N3(ξ, η) = `1
0(ξ) `1

1(η) N4(ξ, η) = `1
1(ξ) `1

1(η) (3.10)

For a curved 9 node 2-D element the shape functions are (Lagrange polynomials
have degree N = 2 here):

N1(ξ, η) = `2
0(ξ) `2

0(η) N2(ξ, η) = `2
0(ξ) `2

1(η)

N3(ξ, η) = `2
1(ξ) `2

0(η) N4(ξ, η) = `2
1(ξ) `2

1(η)

N5(ξ, η) = `2
1(ξ) `2

2(η) N6(ξ, η) = `2
2(ξ) `2

1(η)

N7(ξ, η) = `2
0(ξ) `2

2(η) N8(ξ, η) = `2
2(ξ) `2

0(η)

N9(ξ, η) = `2
2(ξ) `2

2(η) (3.11)

The shape functions of three-dimensional elements then are triple products of the
corresponding Lagrange polynomials.

56 Chapter 3. The SEM for 3-D Seismic Wave Propagation

Figure 3.7: Mapping of a 2-D elements from the reference square. The element
is shown with the Gauss-Lobatto-Legendre collocation points of integration for
the order N = 8. (This figure is taken from Komatitsch [1997], page 50).

For eight node elements:

N1(ξ, η, ζ) = `1
0(ξ) `1

0(η) `1
0(ζ) N2(ξ, η, ζ) = `1

1(ξ) `1
0(η) `1

0(ζ)

N3(ξ, η, ζ) = `1
0(ξ) `1

1(η) `1
0(ζ) N4(ξ, η, ζ) = `1

0(ξ) `1
0(η) `1

1(ζ)

N5(ξ, η, ζ) = `1
1(ξ) `1

1(η) `1
0(ζ) N6(ξ, η, ζ) = `1

0(ξ) `1
1(η) `1

1(ζ)

N7(ξ, η, ζ) = `1
1(ξ) `1

0(η) `1
1(ζ) N8(ξ, η, ζ) = `1

1(ξ) `1
1(η) `1

1(ζ) (3.12)

For 27 node elements:

N1(ξ, η, ζ) = `2
0(ξ) `2

0(η) `2
0(ζ) N2(ξ, η, ζ) = `2

1(ξ) `2
0(η) `2

0(ζ)

N3(ξ, η, ζ) = `2
0(ξ) `2

1(η) `2
0(ζ) N4(ξ, η, ζ) = `2

0(ξ) `2
0(η) `2

1(ζ)

...
...

N26(ξ, η, ζ) = `2
1(ξ) `2

2(η) `2
2(ζ) N27(ξ, η, ζ) = `2

2(ξ) `2
2(η) `2

2(ζ) (3.13)

Figure 3.1.2 shows two shape functions of a two-dimensional 9 node element with
curved faces.
With the general definition of the shape functions (Eq. 3.9), we can now easily
obtain the Jacobi matrix for the 3-D case. It will be needed together with its
determinant, the Jacobian, when we will derive the elemental matrices.

3.1. Mathematical Formulation of the SEM in 3-D 57

0

+1

+1

+10 +1

+1

+1

Figure 3.8: Mapping of 3-D elements on the reference cube Ω3 = [−1, 1]⊗[−1, 1]⊗
[−1, 1]. Left: 8 node element with straight edges and faces. Right: 27 node
element with curved edges and faces.

58 Chapter 3. The SEM for 3-D Seismic Wave Propagation

(a) Shape function N7.

(b) Shape function N2.

Figure 3.9: Shape functions of two-dimensional curved elements based on 9 anchor
nodes.

3.1. Mathematical Formulation of the SEM in 3-D 59

The Jacobi-Matrix and the Jacobian for 3-D elements

For the definition of a proper mesh, the Jacobi-Matrix and the Jacobian have
to fullfill certain restriction: the unit vector being normal to the surface of the
element has to be positive outwards and the Jacobian must never vanish.
On the basis of Equation (3.9) the elements of the Jacobi matrix, which now is a
3× 3 matrix, are computed using the shape functions of the mapping:

Je =
dF e(ξ)

dξ

=
dxe(ξ)

dξ

=
na∑

a=1

dNa(ξ)

dξ
xe

a (3.14)

Writing the full matrix:

J =

∂x(ξ)
∂ξ

∂x(ξ)
∂η

∂x(ξ)
∂ζ

∂y(ξ)
∂ξ

∂y(ξ)
∂η

∂y(ξ)
∂ζ

∂z(ξ)
∂ξ

∂z(ξ)
∂η

∂z(ξ)
∂ζ

 (3.15)

Again the superscript e, denoting the number of the considered element, is
omitted here.

Thus all we need to do is to calculate the derivatives of the shape functions of
Equations (3.10),(3.11),(3.12) and (3.13). This calculation means only taking the
derivative of order N = 1 (see also Eq. 2.14) or N = 2 Lagrange polynomials,
which is very simple. These polynomials and their derivatives are:

N = 1 :

`1
0(ξ) =

ξ − (+1)

−1− (+1)
= −ξ − 1

2
`1 ′
0 = −1

2

`1
1(ξ) =

ξ − (−1)

1− (−1)
=

ξ + 1

2
`1 ′
1 =

1

2
(3.16)

(3.17)

60 Chapter 3. The SEM for 3-D Seismic Wave Propagation

N = 2 :

`2
0(ξ) =

ξ − (+1)

−1− (+1)
· ξ − (0)

−1− (0)
=

ξ2 − ξ

2
`2 ′
0 = ξ − 1

2

`2
1(ξ) =

ξ − (−1)

0− (−1)
· ξ − (+1)

0− (+1)
= 1− ξ2 `2 ′

1 = −2ξ

`2
2(ξ) =

ξ − (−1)

1− (−1)
· ξ − (0)

1− (0)
=

ξ2 + ξ

2
`2 ′
2 = ξ +

1

2
(3.18)

The Jacobian then gets the following form for 3-D elements:

J = detJ =

∣∣∣∣
∂(x, y, z)

∂(ξ, η, ζ)

∣∣∣∣ =

∣∣∣∣∣∣∣

∂x(ξ)
∂ξ

∂x(ξ)
∂η

∂x(ξ)
∂ζ

∂y(ξ)
∂ξ

∂y(ξ)
∂η

∂y(ξ)
∂ζ

∂z(ξ)
∂ξ

∂z(ξ)
∂η

∂z(ξ)
∂ζ

∣∣∣∣∣∣∣
(3.19)

It appears that the Jacobian describes the change in volume of the element when
transforming it from global to local coordinates (see Zienkiewicz & Taylor
[2000], page 209):

dx dy dz = J dξ dη dζ (3.20)

3.1.3 Interpolation of the Functions on the Elements

The interpolation of the continous functions on the volume of the element is done
similar to the 1-D case (Eq. 2.23), using a Lagrangian interpolation scheme. We
choose the interpolating points, on which also the Lagrange polynomials are de-
fined (see Eq. 2.21), to be the same as the collocation points of the GLL quadra-
ture of integration. This will lead to a diagonal mass matrix in almost the same
manner as in the 1-D case. The derivation of the mass matrix follows in Section
3.1.5.
In the case of three-dimensional interpolation we obtain Lagrangian interpolants
L defined on the reference cube, which are triple products of one-dimensional
Lagrange polynomials as they define a tensorial basis `i ⊗ `j ⊗ `k of the space in
which the functions to be interpolated are defined (remember: the order N of the
interpolating polynomials is typically chosen between 4 and 8). This characteris-
tic is also known as the “tensorisation” of the interpolation scheme. It means that
all coordinate directions are interpolated independently from the others. This is
only true for hexaedral elements but not for tetrahedrons. That is why the SEM
is mainly used together with elements that can be mapped on a cube. The inter-
polating three-dimensional polynomials are also said to have the degree N when

3.1. Mathematical Formulation of the SEM in 3-D 61

LN
ijk = `N

i ⊗ `N
j ⊗ `N

k For a scalar function g the three-dimensional interpolation
then yields:

g(ξ) ≈
N∑

i,j,k=0

g(ξi, ηj, ζk) Lijk(ξ)

g(ξ) ≈
N∑

i,j,k=0

g(ξi, ηj, ζk) `i(ξ)⊗ `j(η)⊗ `k(ζ)

=
N∑

i,j,k=0

g(ξi, ηj, ζk) `i(ξ) `j(η) `k(ζ)

=
N∑

i,j,k=0

gijk `i(ξ) `j(η) `k(ζ) (3.21)

The superscript N of the polynomial degree of ` and L is again omitted as in
most parts of the thesis. It follows directly from `i(ξj) = δij (Eq. 2.22) that:

Lijk(ξl, ηm, ζn) = δil δjm δkn (3.22)

For a three-component vector the interpolation is of the form:

ue(ξ) ≈
3∑

l=1

ξ̂l

N∑

i,j,k=0

ue(ξi, ηj, ζk) `i(ξ) `j(η) `k(ζ)

=
3∑

l=1

ξ̂l

N∑

i,j,k=0

ue
ijk `i(ξ) `j(η) `k(ζ) (3.23)

The interpolation scheme is again exact on all the collocation points
ξijk = (ξi, ηj, ζk) as the Lagrange polynomials assume the value 1 at these
points (see Eq. 2.22) and thus also L (Eq. 3.22). For a more compact notation
we define ue

ijk = ue(ξi, ηj, ζk). And the same that was mentioned for the 1-D
case, is valid here: this interpolation can also be used in the code to calculate the
values of a function at any arbitrary point inside the element. It is for example
used to calculate the displacement at some receiver, which is most unlikely to be
exact on one of the collocation points.

62 Chapter 3. The SEM for 3-D Seismic Wave Propagation

The interpolation of partial derivations of a function is performed by computing
the derivative of one or more of the Lagrange polynomials:

∂ue(ξ)

∂ξ
= ∂ξu

e(ξ, η, ζ) ≈
N∑

i,j,k=0

ue
ijk `

′
i(ξ) `j(η) `k(ζ)

∂ue(ξ)

∂η
= ∂ηu

e(ξ, η, ζ) ≈
N∑

i,j,k=0

ue
ijk `i(ξ) `

′
j(η) `k(ζ)

∂ue(ξ)

∂ζ
= ∂ζu

e(ξ, η, ζ) ≈
N∑

i,j,k=0

ue
ijk `i(ξ) `j(η) `

′
k(ζ) (3.24)

The way how to obtain these derivations `
′
i in practice was explained in Section

2.2.2.
The gradient in global x coordinates of a function g then can be maintained by:

∇x g(x(ξ)) ≈
3∑

l=1

x̂l ∂lg(x(ξ, η, ζ))

=
3∑

l=1

x̂l

N∑

i,j,k=0

gijk [`
′
i(ξ) `j(η) `k(ζ) ∂lξ +

+ `i(ξ) `
′
j(η) `k(ζ) ∂lη + `i(ξ) `j(η) `

′
k(ζ) ∂lζ] (3.25)

(see for example Komatitsch & Tromp [1999]).

Here we have to use the Jacobi matrix (∂lξ = ∂ξ
∂xl

) of the inverse mapping function
to account for the coordinate transformation during derivation. This will also be
used when calculating the forces acting on the gridnodes.
When evaluating Equation (3.25) at any of the GLL points x(ξα, ηβ, ζγ) it reduces
to:

∇x g(x(ξα, ηβ, ζγ)) ≈
3∑

l=1

x̂l

[N∑
i=0

giβγ `
′
i(ξα) ∂l ξ (ξα, ηβ, ζγ) +

+
N∑

j=0

gαjγ `
′
j(ηβ) ∂l η (ξα, ηβ, ζγ) +

+
N∑

k=0

gαβk `
′
k(ζγ) ∂l ζ (ξα, ηβ, ζγ)

]
(3.26)

3.1. Mathematical Formulation of the SEM in 3-D 63

We can see that for this calculaton we need the nine elements of the Jacobi-
Matrix ∂ξi

∂xj
, i, j = 1, 2, 3 with ξ1 = ξ, ξ2 = η, ξ3 = ζ of the inverse mapping.

These interpolations will then be used for the derivations of the elemental mass
matrix Me and the forces f e at the sampling points of the element.

3.1.4 Integration of Functions over the Volume of the Ele-
ment

The next step on the way to the matrix formulation for three-dimensional si-
mulations is to define a numerical integration scheme to translate the integrals
of Equation (3.8) into finite sums. In Chapter 2 we have introduced the Gauss-
Lobatto-Legendre quadrature of integration, which is defined on those collocation
points which we chose for the interpolation. This combination of choice of inter-
polating points together with the GLL integration quadrature led to the exact
diagonal shape of the mass matrix in 1-D. In the next section we will see how the
diagonality is also obtained in the 3-D case.
The GLL integration rule for the 3-D case reads as follows:

∫

Λ

g(ξ)dξ =

1∫

−1

1∫

−1

1∫

−1

g(ξ, η, ζ) dξ dη dζ

≈
N∑

i,j,k=0

ωi ωj ωk g(ξi, ηj, ζk)

=
N∑

i,j,k=0

ωi ωj ωk gijk (3.27)

ωi are the weights of the GLL quadrature, which we already know from the 1-D
case. g(ξ) is again an arbitrary function defined on the interval Λ.

The GLL quadrature is exact for polynomials up to degree 2N − 1 (see Ko-
matitsch & Tromp [1999] or Zienkiewicz & Taylor [2000],page 219). It
has been shown that even for a simple homogeneous undeformed element, the
integration involves a product of two polynomials of order N . One results from
the interpolation of the displacement, the other one results from the test function.
Therefore, the integration of a polynomial of order 2N can never be exact. In
addition, introducing heterogeneities and deformed elements leads to even higher
errors in the solution. But in the SEM this price is paid for the sake of an exactly
diagonal mass matrix.

64 Chapter 3. The SEM for 3-D Seismic Wave Propagation

3.1.5 The Elemental Mass Matrices and Their Diagonal-
ity

We have seen before that in the SEM one pays a high price in terms of accuracy
in the integration to obtain a mass matrix which is exactly diagonal. As in the
previous chapter, all discussed features are successively applied to the first integral
of Equation (3.8) to derive the expression for the elements of the elemental mass
matrix. In the following only one component of the vectors (e.g. u = ux instead
of u) that appear under the integrals is considered. This is possible, because the
multiplication of the test function v with u results in:

v · u =
3∑

i,j=1

vi uj x̂i · x̂j =
3∑

i,j=1

vi ujδij =
3∑

i=1

vi ui (3.28)

Therefore, we can treat each component of the displacement separately as we can
choose the test function for every component ui to be v = (δ1i, δ2i, δ3i).
The equations are more concise this way as we can get rid of the first sum in
Equation (3.23), which would appear twice in the calculation of the mass matrix.
The first one in conjunction with the interpolation of the displacement, and the
second one for the interpolation of the test function. In addition, the number of
indices used would get too high. The other components then can be determined
likewise.
Considering the integral over the volume of the element (Ωe) gives:

↓ mapping, Jacobian is needed∫

Ωe

ρ(x) v(x) ü(x) dx =

∫

Λ

ρ(ξ) v(ξ) ü(ξ) J (ξ) dξ

interpolation of v and ü ↓

≈
1∫

−1

1∫

−1

1∫

−1

ρ(ξ, η, ζ)
[N∑

i,j,k=0

vijk `i(ξ)`j(η)`k(ζ)
]

[N∑

l,m,n=0

ülmn `l(ξ)`m(η)`n(ζ)
]
J (ξ, η, γ) dξ dη dγ

GLL quadrature ↓

≈
N∑

r,s,t=0

{
ρrst ωr ωs ωt

[N∑

i,j,k=0

vijk `i(ξr)`j(ηs)`k(ζt)
]

[N∑

l,m,n=0

ülmn `l(ξr)`m(ηs)`n(ζt)
]
Jrst)

}

(3.29)

3.1. Mathematical Formulation of the SEM in 3-D 65

For simplification, all functions as for example u(ξl, ηm, ζn) are again expressed
by using subscripts ulmn directly.
Utilizing similar factorizations as in Chapter 2 we obtain:

N∑
r,s,t=0

{
ρrst ωr ωs ωt

[N∑

i,j,k=0

vijk `i(ξr)`j(ηs)`k(ζt)
]

[N∑

l,m,n=0

ülmn `l(ξr)`m(ηs)`n(ζt)
]
Jrst)

}
=

=
N∑

r,s,t=0

{
ρrst ωr ωs ωt Jrst

[N∑

i,j,k=0

δir δjs δkt

]

[N∑

l,m,n=0

ülmn δlr δms δnt

]}

=
N∑

l,m,n=0

{
ülmn

[N∑

i,j,k=0

N∑
r,s,t=0

ρrst ωrst Jrst δir δjs δkt δlr δms δnt

]}
(3.30)

The weights of the integration quadrature in each direction ωr ωs ωt were com-
bined to ωrst. As there are no restrictions to the choice of v we have set vijk = 1
and by using Equation (2.22) we have evaluated the term on the left side and
obtained the Kronecker-delta distributions. By further arrangement of the sums
we get:

N∑

l,m,n=0

{
ülmn

[N∑

i,j,k=0

N∑
r,s,t=0

ρrst ωrst Jrst δir δjs δkt δlr δms δnt

]}
=

=
N∑

l,m,n=0

ülmn

N∑

i,j,k=0

ρijk ωijk Jijk δli δmj δnk

=
N∑

l,m,n=0

ülmn

N∑

i,j,k=0

ρijk ωijk Jijkδ(lmn)(ijk)

=

(N+1)3∑
α=1

üα

(N+1)3∑

β=1

ρβ ωβ Jβδαβ

= üαM e
αβ (3.31)

66 Chapter 3. The SEM for 3-D Seismic Wave Propagation

Here we used α = lmn and β = ijk, with α, β = 1, . . . , (N +1)3, since all Roman
indices are in the range of 0, . . . , N . δ(lmn)(ijk) = δliδmjδnk was used to get the
appropriate expression for M as a matrix. The superscript e of the mass matrix
only indicates that this is the elemental mass matrix, whereas u = ue was not
explicitly specified. On the last line of Equation (3.31) we have used the implicit
sum convention over repeated indices.
M e

αβ the (N + 1) · (N + 1) elements of the elemental mass matrix can therefore
be maintained by a product of the density ρ, the Jacobian and the weights at a
given point (ξi, ηj, ζk):

M e
αβ = ρβ ωβ Jβ δαβ = ρijk ωijk Jijk (3.32)

∀ i, j, k = 0, . . . , N and α, β as above

A unique transformation between α, β and ijk can be written as:

α =
N∑

i,j,k=0

(i + 1) · (j + 1) · (k + 1) (3.33)

Again the mass matrix is exactly diagonal, which is the desired characteristic for
the SEM as the inversion of the mass matrix is therefore trivial. And computer
memory can be saved to a great extent as was stated earlier, when storing only
the diagonal elements of the mass matrix in a vector.

3.1.6 Calculation of Forces in 3-D

Unlike in Chapter 2, the derivation of the stiffness matrix for 3-D applications will
not be described in detail, since it is not used in practice in the SEM. As discussed
in Section 2.2.8 it is much easier to calculate step by step the forces acting on
the nodes of an element separately. To do so we will first have to determine the
nine elements of the strain tensor at a given point ξαβγ = (ξα, ηβ, ζγ), i.e. the
displacement gradient ∇u (see Eq. 3.26):

∂i u(j) (x(ξαβγ)) ≈
[N∑

l=0

u(j) lβγ `
′
l (ξα)

]
∂iξ(ξα, ηβ, ζγ)

+
[N∑

m=0

u(j) αmγ `
′
m(ηβ)

]
∂iη(ξα, ηβ, ζγ)

+
[N∑

n=0

u(j) αβn `
′
n(ζγ)

]
∂iζ(ξα, ηβ, ζγ) (3.34)

u(j) αβγ is the j-th component of the displacement vector u at the interpolating
point (ξα, ηβ, ζγ).

3.1. Mathematical Formulation of the SEM in 3-D 67

The next step is the calculation of the stress tensor by applying the generalised
Hooke’s Law (Eq. 3.3):

σ(x(ξαβγ)) = c (x(ξαβγ))⊗∇u (x(ξαβγ))

The index notation of this expression is written in Equation (3.3).
The evaluation of the integrand ∇v · σ of the second integral of Equation (3.8)
at one node yields (v has three components and σ is a 3 × 3 tensor):

∇v · σ =
3∑

i,j=1

σij∂jvi ≈
3∑

i,k=1

(3∑
j=1

σij∂jξk

) ∂vi

∂ξk

=
3∑

i,k=1

Bik
∂vi

∂ξk

(3.35)

with

Bik =
3∑

j=1

σij∂jξk (3.36)

Now we can apply the interpolation scheme for ∂vi

∂ξk
and introduce the GLL inte-

gration quadrature (i.e. evaluating the interpolation of ∂vi

∂ξk
at the points of the

GLL quadrature; remember Equation (3.26)) and obtain:

∫

Ωe

∇v · σ dx ≈
1∫

−1

1∫

−1

1∫

−1

[3∑

i,k=1

Bik
∂vi

∂ξk

]
J dξ dη dζ

≈
3∑

i=1

v(i) αβγ

[
ωβωγ

N∑

l=0

ωl Jlβγ B(i1) lβγ `
′
α(ξl)

+ ωαωγ

N∑
m=0

ωm Jαmγ B(i2) αmγ `
′
β(ξm)

+ ωαωβ

N∑
n=0

ωn Jαβn B(i2) αβn `
′
γ(ξn)

]
(3.37)

After all these calculations on the elemental level we can now focus on the global
system of equations for numerical integration of the weak form of the wave Equa-
tion (Eq. 3.7).

68 Chapter 3. The SEM for 3-D Seismic Wave Propagation

3.1.7 The Assembly of the Global Linear System

The last step to complete the numerical spatial integration of the SEM is to
combine the expressions for the elements to the often addressed global linear
system of equations. The process of assembling the elements was introduced in
Section 2.2.6 of the previous chapter. The idea of transforming a global to a
local numbering and vice versa was demonstrated there and is also applied in
3-D. Nevertheless, it is clear that the additional dimensions significantly increase
the difficulties encountered during this operation. In 1-D only one node was
shared between two elements, which led to a rather simple connectivity-matrix.
In 2-D the elements share all of their nodes on the edges and in 3-D the number
of shared nodes far exceeds the number of nodes lying inside one element and
being unaffected by other elements. For an order N = 4, we have elements
containing (N + 1)3 = 125 collocation points, of which 98 belong to more than
one element, and only 27 being separated from others. Four of those nodes,
which are lying on the corners of the cube, belong to eight elements, 40 nodes
are on the edges (without those on the corners) and belong to four elements and
additional 54 nodes belong to two elements as they are lying on the faces of the
elements. This example clearly demonstrates the complexity one has to deal
with when reassembling the elements of the mesh.

Figure 3.10 shows four quadratic elements attached at four edges. The black
circles indicate the shared nodes.

Figure 3.10: Illustration of the connection of 2-D elements at four of their edges.
The node in the middle, displayed as a white square, is shared by all four of them.

Concerning the practical implementation of the assembly for three-dimensional

3.1. Mathematical Formulation of the SEM in 3-D 69

meshes further detail will not be given as the complexity of this topic
lies far outside the frame of this thesis and is only of technical impor-
tance. A solution for this problem may either be found in publications
on classical FEM (Zienkiewicz & Taylor [2000]; Hughes [1987]) or in
the SEM code for global seismic wave propagation written by Dimitri Ko-
matitsch and co-workers, where information about the connectivity is obtained
by some special sorting routines. The code is available for noncommercial sci-
ence from http://www.gps.caltech.edu/~jtromp/research/downloads.html

(CalTech [2002]).

3.1.8 Implementation of sources in 3-D

The implementation of sources in the SEM is very convenient. We have already
seen in Section 2.2.8 that we can simply add external stresses to the stresses
derived from the displacement gradient using Hooke’s Law. In most cases of
earthquake studies, the source mechanism is described using the moment tensor.
When simulating real events, we can use these moment tensors. A detailed math-
ematical formulation is given in Komatitsch & Tromp [1999].
Very recently seismologists also have made efforts to implement rupture mech-
anisms into SEM (Ampuero et al. [2003]). Simulation of dynamic rupture is
probably one of the most important issues in seismology in the coming years.

Part II

Results of the Simulations -
Evaluation and Comparisons

71

Chapter 4

Evaluation of the SEM in 1D

One of the aims of this work was to gain knowledge on the performance and ac-
curacy of the spectral element method compared to standard and improved finite
difference methods. Optimal FD operators (Geller & Takeuchi [1995]) are of
the latter kind and were investigated in the course of an other diploma thesis at
our institute (Metz [2003]). Therefore, the main interest was to compare these
two methods in case of 1-D simulations to find out about advantages and disad-
vantages of either kind. It would have taken much longer to set up appropriate
codes for 3-D modelling, than is given for a diploma thesis. “Optimal operators”
are finite difference operators, that are especially designed to minimize the error
of the numerical differentiation. Further details on this method can be found in
Metz [2003] and references therein. The OPO used in this study are optimized
3-point FD operators.
Because the SEM allows for several different time integration schemes, a com-
parison between those was performed before comparing the best1 one with the
OPO. This included also a test which order of interpolating polynomials leads to
the best results.

As the comparisons presented in Section 4.2 are based on seismograms of 1-D
simulations, some examples will be given in Section 4.1 first. In addition, several
snapshots of simulations with different boundary conditions are shown. The serial
SEM code used for these simulations is printed in the Appendix A.2. The code
was compiled on Linux 2.4.18 using the “intel fortran compiler” version 6.0 by
intel r©. The different simulations, including those with OPO, were performed on
an AMD Athlon XP 1800+ Processor. Attention was paid to run the simulations
used for comparison2 on exactly the same machine.

1in terms of performance (see descriptions later on)
2especially the CPU benchmarking in Section 4.2

73

74 Chapter 4. Evaluation of the SEM in 1D

4.1 Snapshots and Seismograms of 1-D SEM Si-

mulations

In the following, some examples of snapshots and seismograms of 1-D simula-
tions are presented. All these simulations were performed with the program
given in the Appendix A.2. The order of Lagrange polynomials was N = 5
and a total of ne = 200 elements was used. The Length of the model was 1 meter.

Figure 4.1 shows a snapshot and one seismogram obtained in a homogeneous
model using a point source acting only one time step. The source time function
is therefore a delta-peak and the medium is excited at all frequencies from 0
up to the Nyquist frequency. This is the frequency given by half the sampling
frequency, νN = 1

2dt
.

The analytical solution for the displacement in a homogeneous medium can be
expressed by the Heaviside function with arrival time ta = d

α
, with d being the

distance between the source and the receiver. The wave velocity α was 1m
s

and
d = +0.2 m. In Figure 4.1(b) the analytical solution is given together with the
recorded synthetic seismogram.

(a) Snapshot of the displacement field.
The red star marks the location of the
source.

(b) Displacement seismogram at a dis-
tance of 0.2 m away from the source. The
analytical solution is plotted in black.

Figure 4.1: Simulation of a point source acting in a homogeneous model. The
source time function was a delta-peak in time.

In Figure 4.2 a similar simulation is shown with a “two layer model”, meaning
that at a certain coordinate x = 0.55 m the velocity inside the medium is abruptly
changing from α = 1m

s
for x > 0.55 m to α = 0.436m

s
for x < 0.55 m. This change

4.1. Snapshots and Seismograms of 1-D SEM Simulations 75

in model parameters lies exactly on the boundary of two adjacent elements. A
reflected phase can clearly be seen at x = 0.5 m in Figure 4.2(a). The transmitted
phase is at around x = 0.6 m. The reflected phase can also be seen at t = 0.52s
in Figure 4.2(b). The receiver was placed at x = 0.53 m.
When simulations are done using a delta-peak source time function, one is able
to filter the seismograms with several differently shaped filters. This is usually
done by convolution of the seismogram with the source time function wanted.
Possible wavelets that are used for this convolution are ricker wavelets. These
are either the first or second derivative of a Gaussian shaped source time function.

Figure 4.3 shows snapshots of simulations using different boundary conditions.
These simulations were convolved with a first order ricker wavelet. The Gaussian
shaped response is due to the fact that the convolution with a Heaviside function3

acts like an integration of the source signal. For a free surface boundary condition
the phase of the reflected wave is the same as that of the incident wave. When
using rigid boundaries the phase is changed by π = 180◦. When using absorbing
boundaries, some energy is still reflected back into the model as can be seen in
Figure 4.3(d).

3The response of the medium to excitation with all frequencies, i.e. the Green’s function

76 Chapter 4. Evaluation of the SEM in 1D

(a) Snapshot of the displacement field.
The red star marks the location of the
source.

(b) Displacement seismogram at a dis-
tance of 0.2 m away from the source. The
analytical solution is plotted in black.

(c) Snapshot of the displacement field fil-
tered with a ricker wavelet using a domi-
nant frequency of 12 Hz.

(d) Filtered displacement seismogram at
a distance of 0.2 m away from the source
(12 Hz). The analytical solution is plotted
in black.

Figure 4.2: Simulation of a point source acting in a “two layer model”. Wave
velocity α changed at x = 0.55 m from α = 1m

s
for x > 0.55 m to α = 0.436m

s
for

x < 0.55 m. The source time function was a delta-peak in time.

4.1. Snapshots and Seismograms of 1-D SEM Simulations 77

(a) Before reaching the boundary (same
for all simulations).

(b) After reflection at the free surface
boundary.

(c) After reflection at the rigid boundary. (d) After reflection at the absorbing
boundary.

(e) No reflection, when periodic condi-
tions are applied.

(f) Wavelet appears on the right after cir-
cling the periodic boundary.

Figure 4.3: Examples of snapshots showing 1-D simulations with different bound-
ary conditions. The red star marks the location of the source. Note that not the
whole energy of the wavelet is suppressed by the absorbing boundaries (d). The-
oretical background to boundary conditions in SEM are given in Section 2.1.9.

78 Chapter 4. Evaluation of the SEM in 1D

4.2 Description of the Method Used to Com-

pare the performance of SEM and Different

FD methods

As demonstrated in the previous section, there is a variety of ways to present the
output of a numerical simulation. Therefore, it is necessary to define a certain
model setup and output format for comparison between different simulations.
In this study the aim was to benchmark the SEM against several FD methods,
especially the mentioned OPO. Thus, the setup chosen for this benchmark is
explained in more detail.

Altogether, the performance of a method can be divided into 3 major subjects:
the accuracy, the time needed to compute a certain part of the simulation,
called CPU time, and in addition the requirements in computer memory. For
1-D simulations the latter can be neglected as the memory available in modern
computers is sufficient to simulate vibration of strings or the strain of a one-
dimensional bar exposed to some load. Nevertheless, we did a rough comparison
of memory requirements for same model sizes between the OPO and the SEM.
It showed that the SEM probably needs 1.2 to 1.5 times the memory of OPO
simulations. The storage of the Jacobi-Matrices and Jacobians makes for most
of the additional memory. It would be very interesting to compare the memory
demands for 3-D simulations to achieve the same accuracy. The memory needed
for storage of the Jacobians is growing exponentially with additional dimensions.

In order to make comparisons easier, a way to combine the other two criterions
for the perfomance of a method is desirable. This was achieved by a method
that consists of two steps, which will be explained in the following.

An objective measure of the overall performance of a numerical method must be
independent from physical parameters, and is here chosen to be the time it takes
(in CPU time) to achieve a certain accuracy ε for a given model. This will be
referred to as the CPU cost in the following. In other words, a certain accuracy
shall be obtained for a given smallest wavelength, that shall be propagated for a
given distance d (expressed in number of propagated wavelengths=npw).

npw =
d

λ
=

x
〈dx〉

λ
〈dx〉

=
ngp

ppw
, (4.1)

with 〈dx〉 the mean grid spacing, λ the wavelength and x the propagated distance.
ngp is the number of grid points. The denominator of the last term appears to

4.2. Methodology of the Comparisons of SEM and OPO 79

be a good measure of the spatial resolution and is expressed as the grid points
per minimum wavelength:

ppw =
λmin

〈dx〉 (4.2)

Thus, the error ε depends on ppw and npw. The measure of the accuracy used
here, is the so-called relative solution error, which can be obtained in the following
way:

ε(ppw, npw) =

∞∫
−∞

(uanalytical − usynthetic)
2 dt

∞∫
−∞

u2
analytical dt

(4.3)

On the one hand the CPU cost depends on the spatial resolution. On the other
hand, a higher spatial resolution of a given model leads to higher accuracy, but
also to more gridnodes in the model. This in turn increases the CPU time per time
step (cpt). We can therefore define the additional CPU time it takes for every
additional gridpoint, which will be called “effort factor” here, and is denoted by
ef :

ef =
∆cpt

∆ngp
(4.4)

as the cpt per model size is cpt
ngp

. Finally, the overall CPU cost per given model
size ngp = npw · ppw can be expressed by:

CPUcost = npw · ppw · ef (4.5)

To calculate the CPU cost in practice we have to perform two steps. In the first
step we calculate the error ε as a function of ppw and npw (ε = ε(ppw, npw)).
This dependence can be plotted as a surface as done in Figure 4.4(a). Then the
values are rearranged to obtain the ppw needed to limit the error to a certain
value in distance npw: ppw = ppw(ε, npw). Figure 4.4(b) illustrates this case.
In a second step, the mean CPU time per time step is calculated for several
models of different size. From Figure 4.5 one can see that this leads to a more
or less linear relation. The effort factor ef is obtained as the slope of the graph
given by cpt against ngp.
The results of these calculations can be found in the next section.

For the first step, a model was set up for both methods with 2341 grid nodes,
of which 1200 belonged to the actual model. The rest served for simulating
an infinitely long medium to prevent reflections from the artificial boundaries.
To obtain this number of points in the SEM an appropriate number of elements,
depending on the order of polynomials, was used. A value of 0.82 for the Courant

80 Chapter 4. Evaluation of the SEM in 1D

number was chosen in all SEM simulations, which is the highest number that can
be used to achieve stable solutions. Three items have to be emphasized at this
point:

• The distance between grid points varies in the SEM. Therefore all that is
said about any relation between number of gridpoints and length corre-
sponds to the mean distance.

• Boundary effects did not play a role as the time that was simulated was
chosen to be shorter than it takes the reflected waves to arrive at the receiver
being nearest to the boundary.

• The Courant value of 0.82 in SEM leads to an effective Courant value of
around 0.5 for order N=5 spectral elements. This is due to the fact that
the stability criterion uses the minimum grid distance, whereas the mean
grid spacing was used for the effective Courant number.

The source was located one third of the overall length away from the left end,
exactly on the boundary of two elements. Thus, the index of the corresponding
grid node was slightly different for different polynomial degrees. The source
location marks the left end of the receiver array. A total of 240 receivers were
located in the model, spread over the 1200 points mentioned. The mean distance
between the receivers was thus 5 times the mean grid spacing 〈dx〉. The first
receiver was located 5〈dx〉 away from the source, the last at 240 · 5〈dx〉.
The source acting on the medium was a point source with a delta-peak in time
to enable convolution of different source time functions after the simulation was
completed. The evaluation was carried out with several “Matlab” routines.

This special setup allowed for a maximum of 30 propageted wavelengths (npw),
with 40 points per wavelength. Frequencies were chosen such that the simulations
could be evaluated in the range of 5 up to 40 ppw.
Two different kinds of models were simulated. One homogeneous model and one
“two layer model” where the wave velocity was changing in the middle of the
receiver array, again, the interface lying exactly on a boundary of elements in
the SEM. The ratio of velocities was chosen to be α1

α2
= 0.7, with α1 being the

wave velocity in the left part of the model.
For both models an analytical solution could be obtained at every receiver. Thus
it was possible to calculate the relative solution error ε of the simulations. In
practice, the value of ε is multiplied by 100 to obtain percentages.

It is worth mentioning that the values of ppw used for the preliminary results
of this study were calculated using the dominant frequency ν0 of the convolved
ricker wavelet, in contrast to many publications, in which a value of νmax = 2.5ν0

is used. At approximately this frequency the radiated energy drops below 5 % of

4.3. Results of the Comparison 81

the total energy of the wavelet (Komatitsch & Vilotte [1998]). Therefore, the
error ε may be significantly higher than expected for a value of associated ppw.
To avoid confusion and to be consistent with earlier publications, the value of
ppw defined by the minimum wavelength, and thus calculated using the maximum
frequency, was used for the comparisons.

4.3 Results of the Comparison

In the first part of this section the CPU benchmark of the SEM in displacement
formulation4 together with the Optimal 3-point FD Operators is shown. The re-
sults of the CPU benchmark of all further SEM types are summed in Table 4.1. In
a second part, comparisons between different time scheme implemenations for the
SEM are persented, followed by comparisons of SEM using different polynomial
orders. The last part is dealing with the comparisons of SEM to OPO.

4.3.1 Benchmark of the CPU time per time step

The CPU benchmark consisted of 40 to 50 different simulations using model
sizes between 401 and 20001 grid points. Each simulation was done ten times
and ran for 2000 time steps. The value of CPU time per time step is therefore
the mean of 20000 values to satisfy statistical requirements. All tests were
carried out on the same machine as mentioned at the beginning of this chapter.

In Figure 4.5 the results of this benchmark for the OPO together with the SEM
based on displacement formulation and calculation of forces are shown . It is
clearly visible that the OPO need the fewest time, which may be due to the
lower number of points per operator.
Usual FD Taylor Operators

From Table 4.1 one can see that using the displacement formulation for the SEM
leads to the fewest CPU time needed for one time step only considering different
time schemes of the SEM. Nevertheless the difference is not too great. The
CPU time per time step increases with increasing order of spectral elements, but
surprisingly only for values greater than N = 5. Only for the stiffness matrix
formulation the effort factor of order 4 is less than that of order 5. Despite this,
usual FD Taylor Operators appear to be less time consuming than the OPO, even
the 5-point FD operators.
The effort factors gained from the CPU benchmark are used in the next section
for calculating the corresponding cost.

4formulation that is used throughout Chapter 2

82 Chapter 4. Evaluation of the SEM in 1D

5
10

15
20

25
30

35
40

10
20

30
40

0

10

20

30

points per wavelength
Number of

propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

(a) Relative solution error plotted against npw and ppw.

0
10

20
30

40

0
0.2

0.4
0.6

0.8
1
5

10

15

20

25

30

35

40

Number of propagated wavelengthsrelative solution error [%]

po
in

ts
 p

er
 w

av
el

en
gt

h

(b) Inverted surface showing ppw plotted against ε and npw.

Figure 4.4: Surfaces showing the relative solution error ε and ppw as examples
of the results used for the comparisons. A homogeneous model was used and
wave propagation was simulated with SEM using degree 8 polynomials. Note
that the dominant frequency ν0 itself was used for the calculation of ppw here.
For the comparisons the value was changed to be the maximum frequency of the
corresponding ricker wavelet, which is given by νmax = 2.5ν0.

4.3. Results of the Comparison 83

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6
x 10

−3

model size in number of grid points

m
ea

n
C

P
U

 ti
m

e
pe

r
tim

es
te

p

SEM N=s04: 2.81e−07 [s d(dx)]

SEM N=s05: 2.6e−07 [s d(dx)]

SEM N=s08: 2.81e−07 [s d(dx)]

SEM N=s12: 3.2e−07 [s d(dx)]

OPO N=g03: 2.35e−07 [s d(dx)]

Figure 4.5: Benchmark of CPU time per time step for different model sizes per-
formed for four different SEM’s and the OPO. The values shown in the legend
give the corresponding effort factor ef , determined by the slope of each graph.

84 Chapter 4. Evaluation of the SEM in 1D

Method Order of Operator effort factor
N ef 10−7

SEM 4 2.81
5 2.60
8 2.81
12 3.20

OPO 3 2.35

Tayler Op. 3 1.2

Taylor Op. 5 1.3

SEM smf 4 2.48
5 2.74
8 3.59
12 4.14

SEM acf 4 2.96
5 2.89
8 3.08
12 3.53

SEM pcf 4 5.29
5 5.07
8 5.55
12 6.19

Table 4.1: Summary of the results from the CPU benchmark. The abbrevia-
tions are: smf=“stiffness matrix formulation”, acf=“acceleration formulation”,
pcf=“predictor-corrector formulation”. Markers are printed every second sam-
pling point.

4.3. Results of the Comparison 85

4.3.2 Comparison of Spectral Element Methods Using
Different Time Integration Schemes

In the following several types of time integration schemes used in the SEM are
compared to find out which one is performing best. The implemented time
schemes are the explicit FD 3-point displacement formulation, an explicit New-
mark scheme in acceleration formulation using no iterations and a predictor-
corrector Newmark scheme with one iteration. For details on these time schemes
see Section 2.1.8 and Komatitsch [1997]; Komatitsch & Vilotte [1998]. For
general introduction into this topic see for example Hughes [1987].
All simulations were done for a homogeneous medium. Results of simulations
of heterogeneous media differ slightly but do not change the outcome of this
comparison significantly.
The performance is defined in terms of CPU cost as explained above. Nevertheless
it is important to know about the accuracy itself. Therefore two plots are shown
for each comparison. The first one gives the difference in relative solution error ε
plotted against points per wavelength and numbers of propagated wavelengths.
From these plots one can clearly distinguish the areas in which one or the other
method is more accurate. Colour scales are chosen in such a way that red colours
denote positve and blue colours denote negative differences with white colours
giving zero. Positive difference means here that the method mentioned first is less
accurate than the second method and vice versa. Sometimes differences appear to
be either positive or negative without changing signs indicating that one method
dominates for all values of ppw and npw.
The second plot of each comparison illustrates the relative CPU cost of the meth-
ods. Here the surfaces, derived like in Section 4.2 by inverting the accuracy sur-
face and multiplying by the effort factor, are divided point by point. Thus, values
higher than one show areas where the method mentioned first is more costly than
the second, whereas values smaller than one indicate areas where the first method
is less accurate. For better distinction the colour scales are defined that white
colours indicate the value 1, red are values higher and blue values smaller than
1. The surfaces are only plotted for values of the error ε in the range 0 to 1 as
higher errors are typically unacceptable.
All comparisons in this subsection are based on SEM simulations with order
N = 5 Lagrange polynomials. The difference in performance of different orders
will be investigated in the next subsection.
The abbreviations used in the following are:

DF displacement formulation

ACF acceleration formulation

PCF predictor-corrector formulation

86 Chapter 4. Evaluation of the SEM in 1D

5

10

15

20

0
10

20
30

40
−2.5

−2

−1.5

−1

−0.5

0

points per wavelength

Difference in Accuracy of ACF 5 with DF 5 for Homogeneous Models

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

Figure 4.6: ACF - DF: Difference in accuracy of the acceleration and displacement
formulation of the SEM. Using an acceleration method leads to higher accuracy
for all values of ppw and npw. This can be seen from the values of the surface,
which are all less than zero as given by the colour scale.

0

10

20

30

40

0

0.2

0.4

0.6

0.8

1
0.5

0.6

0.7

0.8

0.9

1

Number of propagated wavelengths

Relative CPU Cost of ACF 5 and DF 5 for Homogeneous Models

relative solution error [%]

re
la

tiv
e

C
P

U
 c

os
t

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Figure 4.7: ACF - DF: Relative CPU cost of the acceleration and displacement
formulation of the SEM. The acceleration formulation shows less CPU cost for
all values of npw and ε as the values of the cost surface are all smaller than 1.
Particularly for smaller errors and small numbers of propagated wavelengths it
performs better.

4.3. Results of the Comparison 87

4
6

8
10

12
14

16

0

10

20

30

40
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

points per wavelength

Difference in Accuracy of ACF 5 and PCF 5 for Homogeneous Models

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

−0.4

−0.2

0

0.2

0.4

0.6

Figure 4.8: ACF - PCF: Difference in accuracy of the acceleration and predictor-
corrector formulation of the SEM. Here the acceleration formulation is only better
for a smaller number of propagated wavelengths, indicating that the predictor-
corrector formulation is more accurate for greater distances. The difference is
getting less with increasing number of ppw. At values of ppw = 10 − 12 finally,
the ACF is getting better than the PCF again for great numbers of npw.

0

10

20

30

40

0

0.2

0.4

0.6

0.8

1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of propagated wavelengths

Relative CPU Cost of ACF 5 and PCF 5 for Homogeneous Models

relative solution error [%]

re
la

tiv
e

C
P

U
 c

os
t

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Figure 4.9: ACF - PCF: Relative CPU cost of the acceleration and predictor-
corrector formulation of the SEM. This comparison indicates that the ACF per-
forms much better in terms of CPU cost. The whole surface lies below 0.65.

88 Chapter 4. Evaluation of the SEM in 1D

6
8

10
12

14
16

0

10

20

30

40
−0.5

0

0.5

1

1.5

2

2.5

3

points per wavelength

Difference in Accuracy of DF 5 and PCF 5 for Homogeneous Models

Number of
propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

0

0.5

1

1.5

2

2.5

Figure 4.10: DF - PCF: Difference in accuracy of the displacement and predictor-
corrector formulation of the SEM. The behaviour of this surface is relatively
similar to Figure 4.8, showing higher errors for DF than for the PCF for most
areas. Only within a small band of the first few npw the DF is more accurate.
As expected the difference in accuracy is decreasing with increasing ppw.

0

10

20

30

40

0

0.2

0.4

0.6

0.8

1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of propagated wavelengths

Relative CPU Cost of DF 5 and PCF 5 for Homogeneous Models

relative solution error [%]

re
la

tiv
e

C
P

U
 c

os
t

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Figure 4.11: DF - PCF: Relative CPU cost of the displacement and predictor-
corrector formulation of the SEM. This figure shows that the PCF is again more
time consuming as the values of the surface are everywhere smaller than 0.82.

4.3. Results of the Comparison 89

Combining the results of the three upper comparisons, it can clearly be seen that
the ACF exhibits the best performance, although it is not the most accurate one
for all tested numbers of npw and ppw.

4.3.3 Comparisons of Accuracy and CPU Cost for differ-
ent orders of Spectral Elements

Following the comparsions of different time integration schemes, the performance
of the SEM with different order of interpolating functions will be investigated. All
results in this subsection were obtained from simulations using the acceleration
formulation which showed the best performance as demonstrated above. Three
different orders for the Lagrange polynomials were tested: N = 4, 5, and 8. It is
important to keep the value of the Courant number of 0.82 in mind, which was
used for all orders. This is leading to different time steps dt, but is considered
here to get the maximum performance of each SEM type.

4
6

8
10

12
14

16

0

20

40
0

0.5

1

1.5

2

2.5

3

3.5

points per wavelengthNumber of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

0.5

1

1.5

2

2.5

3

(a) Difference in accuracy of SEM with
N = 4 and N = 5.

0
10

20
30

40

0
0.2

0.4
0.6

0.8
1

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Number of propagated wavelengthsrelative solution error [%]

re
la

tiv
e

C
P

U
 c

os
t

0.9

0.95

1

1.05

1.1

1.15

1.2

(b) Relative CPU cost of SEM with N = 4
and N = 5.

Figure 4.12: Comparison of accuracy and CPU cost for SEM with order N = 4
and N = 5 of the interpolating Lagrange polynomials. Using a higher order is
expected to be more accurate. Therefore, the differential surface is lying above 0
for all values of npw and ppw. In addition, order N = 5 is less expensive in CPU
cost as almost all of the surface showing the relative cost is lying above 1.

90 Chapter 4. Evaluation of the SEM in 1D

4
6

8
10

12
14

16

0

20

40
0

0.5

1

1.5

2

2.5

3

3.5

4

points per wavelengthNumber of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

0.5

1

1.5

2

2.5

3

3.5

(a) Difference in accuracy of SEM with
N = 5 and N = 8.

0
10

20
30

40

0
0.2

0.4
0.6

0.8
1

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Number of propagated wavelengthsrelative solution error [%]
re

la
tiv

e
C

P
U

 c
os

t

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(b) Relative CPU cost of SEM with N = 5
and N = 8.

Figure 4.13: Comparison of accuracy and CPU cost for SEM using Lagrange
polynomials of order N = 5 and N = 8. Again, the higher polynomial order
leads to higher accuracy for the whole area. Despite the fact that the effort
factor is larger for order 8, the gained accuracy compensates for this and the
overall CPU cost of order 8 is less than for order 5. Only at very few npws the
SEM with N = 5 seems to be more effective. Thus using order of 8 leads to a
maximum in performance.

4.3.4 Comparison of Accuracy and CPU Cost of the Spec-
tral Element Method with Optimal Operators

The final and most interesting part of the comparisons deals with the question if
the SEM is more accurate and in addition less expensive in CPU cost than the
Optimal FD Operators. The setup chosen for this comparison was described in
Section 4.2. Simulations were performed for homogeneous models as well as for
a “two layer model”. As demonstrated in Section 4.3.2 the best performing SEM
type is the one based on an acceleration formulation of the time integration.
Therefore, the comparisons shown here were done using this type of method.
We have seen that the most accurate and best performing SEM was the one
using polynomials of degree eight. Higher orders would surely perform better,
but they make less sense for real applications, as the value for the time step dt,
calculated using the stability criterion, depends on the minimum grid spacing.
Thus choosing high orders leads to very low values of dt and therefore needs a
lot more time steps to calculate the same physical time.
As mentioned earlier, the effective Courant number of the SEM using N = 5 was

4.3. Results of the Comparison 91

around 0.5, which was also used for the OPO. These both methods thus have
comparable time steps dt. To account for this, the effort factor of the better
performing eight order SEM is corrected by the ratio dtOPO

dtSEM8
for the comparisons.

The effort factor therefore increases from 3.08 · 10−7 to 4.52 · 10−7.

Homogeneous Models

1020 1040 1060 1080 1100 1120

−1

0

1

2

3

4

5

6

5 ppw Analytical Solution blue − OPO green − SEM red

Figure 4.14: Filtered seismograms of station 100 for OPO (green) and SEM (red)
for homogeneous models (5 ppw). The analytical solution is plotted in blue.

1040 1060 1080 1100 1120 1140 1160

0

2

4

6

8

10

12

10 ppw Analytical blue − OPO green − SEM red

Figure 4.15: Filtered seismograms of station 100 for OPO (green) and SEM (red)
for homogeneous models (10 ppw). The analytical solution is plotted in blue.

92 Chapter 4. Evaluation of the SEM in 1D

6

8

10

12

14

16

10
20

30
40

0

2.5

5

points per wavelength

SEM of Order 5 with Acceleration Formulation, Homogeneous Model

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

(a) SEM ACF order N = 5.

6

8

10

12

14

16

10
20

30
40

0

2.5

5

points per wavelength

Optimal 3−point FD Operator, Homogeneous Model

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

(b) OPO.

Figure 4.16: Relative solution error ε of SEM (a) and OPO (b) for homogeneous
models. The scale of the z-axis is the same for both plots, only the colouring
is different. One can see the different behaviour of the methods with changing
ppw and npw. On the one hand the OPO show an almost linear increase with
distance, whereas the error of the SEM grows exponentially. This indicates the
optimally reduced numerical dispersion of the former method. On the other hand,
the SEM shows a better behaviour with increasing ppw but overall OPO are mor
accurate.

4.3. Results of the Comparison 93

0

10

20

30

40

00.20.40.60.81
2

4

6

8

10

12

14

16

Number of
propagated
wavelengths

SEM of Order 5 with Acceleration Formulation, Homogeneous Model

relative solution error [%]

po
in

ts
 p

er
 w

av
el

en
gt

h

4

6

8

10

12

14

(a) SEM ACF N = 5.

0

10

20

30

40

00.20.40.60.81
2

4

6

8

10

12

14

Number of
propagated
wavelengths

relative solution error [%]

Optimal 3−point FD Operator, Homogeneous Model

po
in

ts
 p

er
 w

av
el

en
gt

h

4

5

6

7

8

9

10

11

12

13

(b) OPO.

Figure 4.17: Minimum points per wavelength needed by SEM (a) and OPO (b)
for homogeneous models to achieve a certain error and distance. Colour scales
are the same and the range is given on the right. The slope of the SEM surface
indicates that the ppw needed are almost the same in the range of ε plotted
here. The Optimal Operator surface grows exponentially with decreasing error.
Considering the behaviour of the methods with increasing distance npw, again
the OPO appear to be better, as the number of ppw increases slower with distance
as that of the SEM.

94 Chapter 4. Evaluation of the SEM in 1D

5
10

15
20

25
30

35
40

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10−4

Number of propagated wavelengths

SEM of order 5 with acceleration formulation, homogeneous model

relative solution error [%]

C
P

U
 c

os
t

(a) SEM ACF N = 5.

5
10

15
20

25
30

35
40

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10−4

Number of propagated wavelengths

Optimal 3−point FD Operator, homogeneous model

relative solution error [%]

C
P

U
 c

os
t

(b) OPO.

Figure 4.18: Overall CPU cost of the SEM (a) and the OPO (b) for homogeneous
models. Obviously the OPO are less expensive in CPU cost than the SEM of
order N = 5.

4.3. Results of the Comparison 95

6
8

10
12

14
16

0

10

20

30

40
−1

0

1

2

3

4

points per wavelength

Difference in Accuracy of
ACF 5 and OPO 3 for Homogeneous Models

Number of
propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

0

0.5

1

1.5

2

2.5

3

3.5

Figure 4.19: Difference in accuracy of SEM ACF N = 5 and OPO for homoge-
neous models. The colour scale is chosen in such a way that zero difference is
given in white, positive values in red and negative values in blue. One can see
that the SEM is more accurate for less than 10 npw. The fact that this number
increases steadily up to around 20 when using 16 ppw or more again shows that
the OPO are more suited for propagating waves for long distances.

0

10

20

30

40

0

0.2

0.4

0.6

0.8

1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of propagated wavelengths

Relative CPU Cost of ACF 5 and OPO 3 for Homogeneous Models

relative solution error [%]

re
la

tiv
e

C
P

U
 c

os
t

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 4.20: Relative CPU cost of SEM ACF N = 5 and OPO for homogeneous
models. For most cases the OPO need less CPU time per time step since the
ratio of CostSEM5

CostOPO
is then greater than 1. Only for less than 10 npw and for very

small errors the SEM appears to be more effective.

96 Chapter 4. Evaluation of the SEM in 1D

4 6 8 10 12 14 16

0
10

20
30

40
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

points per wavelength

Difference in Accuracy of ACF 8 and OPO 3 for Homogeneous Models

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Figure 4.21: Difference in accuracy of SEM ACF N = 8 and OPO for homo-
geneous models. Here the SEM of order eight is much more accurate than the
OPO in most of the plotted area. This demonstrates the “spectral” behaviour
of the SEM, which means that the solution converges in the same manner as the
pseudo-spectral methods with increasing N .

0

10

20

30

40

0

0.2

0.4

0.6

0.8

1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of propagated wavelengths

Relative CPU cost of ACF 8 and OPO 3 for Homogeneous Models

relative solution error [%]

re
la

tiv
e

C
P

U
 c

os
t

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Figure 4.22: Relative CPU cost of SEM ACF N = 8 and OPO for homogeneous
models. In contrast to the SEM with N = 5, using a higher order leads to a
better performance. This can be seen from the bigger area, in which the SEM of
degree 8 is less expensive in CPU Cost than the OPO, indicated by blue colours.
Note that the CPU Cost of SEM N = 8, where a Courant value of 0.82 was used
is plotted here. Thus the time steps between SEM N = 8 and OPO differ. Figure
4.23 shows the comparison in CPU cost, when using the same time step.

4.3. Results of the Comparison 97

0

10

20

30

40

0

0.2

0.4

0.6

0.8

1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of propagated wavelengths

Relative CPU Cost of ACF 8 with OPO 3 for Homogeneous Models

relative solution error [%]

re
la

tiv
e

C
P

U
 c

os
t

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4.23: Relative CPU cost of SEM ACF N = 8 and OPO using the same
time step for homogeneous models. This figure illustrates that the performance
of the SEM of order eight gets worse when using other time steps. The ratio
of CostSEM8

CostOPO
is rather the same as the ratio of CostSEM5

CostOPO
as can be seen when

comparing this plot to the surface in Figure 4.20 (same range for the z-axis).

98 Chapter 4. Evaluation of the SEM in 1D

6
8

10
12

14
16

0

10

20

30

40
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

points per wavelength

Two Layer Models

Difference in Accuracy of ACF 5 and OPO 3 for Two Layer Models

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4.24: Difference in accuracy of SEM ACF N = 5 and OPO for hetero-
geneous models. The differential surfaces of the error ε show much more noise.
Nevertheless, it is evident that the SEM of order N = 5 is less accurate compared
to the OPO than for homogeneous models.

0

10

20

30

40

0

0.2

0.4

0.6

0.8

1
0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of propagated wavelengths

Relative CPU Cost of ACF 5 and OPO 3 for Two Layer Models

relative solution error [%]

re
la

tiv
e

C
P

U
 c

os
t

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Figure 4.25: Relative CPU cost of SEM ACF N = 5 and OPO for heterogeneous
models. This figure indicates that the OPO are less expensive than the SEM
N = 5 for almost all values of npw and ppw. One area can be distinguished
where the surface shows a minimum close to z = 0.

4.3. Results of the Comparison 99

4
6

8
10

12
14

16

0
10

20
30

40
−0.15

−0.1

−0.05

0

0.05

0.1

points per wavelength

Difference in Accuracy of ACF 8 and OPO 3 for Two Layer Models

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Figure 4.26: Difference in accuracy of SEM ACF N = 8 and OPO for heteroge-
neous models. The accuracy of SEM with order eight is better than of the OPO in
a great part of the plot. The step that can be seen in the middle probably results
from the interface of the model regions, where wave velocities change. In this
area the error shows increased noise and the OPO seem to gain accuracy. The
extremely high values in the back come from errors in the evaluation routines.

0

10
20

30
40

0

0.2

0.4

0.6

0.8

1
0.5

1

1.5

2

2.5

Number of propagated wavelengths

Relative CPU Cost of ACF 8 and OPO 3 for Two Layer Models

relative solution error [%]

re
la

tiv
e

C
P

U
 c

os
t

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 4.27: Relative CPU cost of SEM ACF N = 8 and OPO using the same
time step for heterogeneous models. This figure shows again a minimum in the
ratio CostSEM8

CostOPO
, but this time it is more prominent and thus the CPU cost of both

methods is more balanced. The peak in the middle probably derives from the
high values seen in the surface of the relative solution error.

Chapter 5

Evaluation of the Spectral
Element Method in 3-D

In the previous chapter the comparisons between different kinds of spectral ele-
ment methods and between the best performing one and the “optimal operators”
have shown some significant characteristics. The OPO was the method with the
lowest CPU time per time step and, in most cases, also the best performing one.
The definition of performance was a combination of accuracy and CPU time per
time step, called CPU cost.
It is obvious that these comparisons of 1-D simulations can only be a first step.
Extrapolation of the behaviour to higher dimensions is not possible without fur-
ther investigation. In addition, memory demands play an important role now as
memory is more limiting than time. Thus, comparisons of 3-D simulations should
also contain a test of the accuracy achieved for the same computer memory in-
stead of equally sized models.
In this chapter the results of three-dimensional SEM and FD simulations are
presented using explosive and dip-slip sources in a homogeneous rectangular block
model. These simple setups allow for the same method of comparison used for
the 1-D simulations. Moreover, an interpretation of the results is easier than for
complex models.
The choice of the model size was restricted due to the memory available, which
was 2 GB for a single machine. In the beginning only a serial SEM code was used,
which led to a maximum number of 60, 45 and 30 elements in the x, y, and z
direction respectively. The polynomial degree chosen for the spectral elements
was N = 5. Thus, the overall number of nodes in the grid was 241 x 181 x 121.
The memory required was 1.6 GB. In contrast to that, the FD code only needed
0.6 GB for the same overall number of grid points, leading to a ratio of 2.66.
The dimensions of the model were 800 by 600 by 400 kilometer leading to cubic
elements. Although 2 GB would have been available, these configuration was
chosen to achieve cubic elements and a ratio of x, y, and z dimensions of 4:3:2 at
the same time.

101

102 Chapter 5. Evaluation of the SEM in 3-D

The source was located at x = 275 km and y = 300 km and two different depths
for the source were chosen: 200 km and 10 km. The Latter position was used to
excite strong surface waves. The locations of sources and receivers were chosen
to allow for the same evaluation as in 1-D. Thus, the first receiver was located
directly above the source and 149 receivers were evenly distributed along the x
direction between 275 and 775 km away from the source. Figure 5.1 illustrates
the model setup.

0 100 200 300 400 500 600 700 800
0

300

600
−400

−350

−300

−250

−200

−150

−100

−50

0

Model Setup

x [km]
y [km]

z
[k

m
]

Figure 5.1: Model setup for 3-D simulations. The position of the sources is
indicated by red stars. Every fifth receiver is plotted as green triangle.

The idea of this setup was to ensure a maximum distance between the last receiver
and the source and at the same time to avoid reflections from the boundaries.
Especially the x position of the source and first receiver were chosen in such a
way that reflected waves coming from the boundary at x = 0 and from the sides
at y = 0 and y = 600 arrive later than the direct wave at the last receiver. Thus,
the seismograms could be evaluated for the same time window.
The time step used was 0.1 s and the wave velocities vs and vp of shear and
compressional waves respectively were 3500 and 6062 m

s
. These values correspond

to a ratio of vp

vs
=
√

3. Choosing the same time step for both methods leads to
a similar effective Courant value. The number of time steps simulated was 950,
thus covering 95 s. This simulation time is sufficient to record P-waves at the last
receiver. S-waves are cut off for the last third of receivers. By doing so, a strong
difference in accuracy for the receivers recording P and S-waves and for those,
which only record P-waves, could be observed. This difference arises from the
fact that S-waves are sampled with less points per wavelength and thus produce a

5.1. Seismograms of the Simulations 103

higher error. Although both methods provide the use of absorbing boundaries, all
reflected waves are cut off to be on the save side, as the investigation of boundary
effects was not the objective of this study. The seismograms were evaluated with
respect to a quasi-analytical solution obtained from the program “Qseis” (Wang
[1999]). This program only gives results for vertical 2-D cross-sections, which was
the reason for the zero offset of the receiver array in the y direction with respect
to the source.
In the first section of this chapter, some seismograms of the SEM are plotted
to show the behaviour of this method and to give an example of the output
compared. For the first case of an explosive source the seismograms of the quasi-
analytical and FD simulations are plotted too, as this is the only case where a
difference can be seen by just looking at the different time series. Afterwards, a
CPU benchmark is shown and in the last section, comparisons of the accuracy
and the derived overall CPU cost are presented. These comparisons are only
shown for one component of the seismograms as no additional information can
be derived from the others. The seismograms were shifted in time to align the
P-phases and the different traces were normalized to the maximum value of all
seismograms. As the definition of the source time function was different for the
simulations using SEM and FDM, the phase shift is considered to assure equal
odds.
The 3-D SEM program code was provided by Dimitri Komatitsch and is a simpler
version of the CalTech [2002] code used for simulations in the Los Angeles
basin (Komatitsch et al. [2003a]). The FD code was written by students of
the seismology group of the Institute of Geophysics at the Ludwig-Maximilians-
University Munich, which is based on a fourth-order velocity-stress formulation
on a staggered grid (Virieux [1986]; Madariaga [1976]). Both methods were
used with a second order time integration scheme.

5.1 Seismograms of the Simulations

From the elastodynamic equation one expects only P-waves to be excited in a
homogeneous medium when using explosions. The direct P-wave as given by the
quasi-analytical solution can be seen in Figures 5.2 and 5.2. When these P-waves
reach the free surface P to SV converted waves are generated, which continue to
travel along the surface as Rayleigh waves. These are visible for shallow source
depths as in Figures 5.8 and 5.10 for explosive and dip-slip sources. The reflected
waves are not recorded as all receivers lie on the surface of the model. The
amplitude of the Rayleigh waves is expected to be higher for a source being
closer to the surface. Thus, placing the source at 10 km depth allows for a good
test of the representation of the free surface in both models.
For dip-slip sources both P- and S-waves are expected to travel inside the homo-
geneous medium (Fig. 5.9). For all cases the velocity at the receivers is plotted,

104 Chapter 5. Evaluation of the SEM in 3-D

normalized to the highest amplitude of all seismograms. The y-axis of the plots
gives the distance between source and corresponding receiver. The absolute val-
ues give the location with respect to the origin of the model and they differ
between the methods as the FD model had to be defined from −x

2
to +x

2
and the

SEM model from 0 to x. Only the x- and z-component are plotted as for this
configuration no signal appears on the y-component.

0 10 20 30 40 50 60 70 80 90 100

0

100

200

300

400

500

QSEIS x−component

time [s]

ep
ic

en
tr

al
 d

is
ta

nc
e

[k
m

]

Figure 5.2: Quasi-analytical solution - Explosion at z = −200 km (x-component).
Only a direct P-wave is observed.

The seismograms of the SEM simulations for an explosive source in 200 km depth
show a slightly visible S-wave (5.6). This spurious phase becomes more prominent
for less points per wavelength. In Figure 5.7(a) the seismograms were convolved
with a ricker wavelet which dominant frequency corresponds to a number of 3
points per minimum wavelength. In addition, the theoretical arrival times for
P and direct S-waves are plotted. The amplitude of the S-wave is affected by
the relative position of the source inside an element. Figure 5.7(a) shows the
seismograms for an arbitrary source position whereas Figure 5.7(b) derives from
placing the source exactly at one of the GLL points. It turns out that this is an
effect of the source implementation in the SEM formalism. The point source is
distributed over the entire element, which leads in the most general case of an
arbitrary source position to numerical anisotropy. This effect is reduced when
placing the source at an GLL point, especially at position (ξ, η, γ) = (0, 0, 0) (i.e.
the middle of the element). An other way to reduce the effect is to decrease the

5.1. Seismograms of the Simulations 105

0 10 20 30 40 50 60 70 80 90 100

0

100

200

300

400

500

QSEIS z−component

time [s]

ep
ic

en
tr

al
 d

is
ta

nc
e

[k
m

]

Figure 5.3: Quasi-analytical solution - Explosion at z = −200 km.

400 500 600 700 800 900
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

time [100 ms]

no
rm

al
iz

ed
 v

el
oc

ity

FDM green − SEM red − Qseis blue EXPL 200 rec 30 Z

Figure 5.4: Explosion at z = 200 km: Comparison of seismograms at receiver 30
at a distance of 97 km.

maximum frequency exited by the source or by increasing the spatial sampling
inside the element conataining the source (e-mail from Dimitri Komatitsch).

106 Chapter 5. Evaluation of the SEM in 3-D

0 10 20 30 40 50 60 70 80 90 100

−100

0

100

200

300

400

FDM x−component

time [s]

ep
ic

en
tr

al
 d

is
ta

nc
e

[k
m

]

(a)

0 10 20 30 40 50 60 70 80 90 100

−100

0

100

200

300

400

FDM z−component

time [s]

ep
ic

en
tr

al
 d

is
ta

nc
e

[k
m

]

(b)

Figure 5.5: FD solution - Explosion at z = −200 km.

5.1. Seismograms of the Simulations 107

0 10 20 30 40 50 60 70 80 90 100

300

400

500

600

700

800

SEM x−component

time [s]

ep
ic

en
tr

al
 d

is
ta

nc
e

[k
m

]

(a)

0 10 20 30 40 50 60 70 80 90 100

300

400

500

600

700

800

SEM z−component

time [s]

ep
ic

en
tr

al
 d

is
ta

nc
e

[k
m

]

(b)

Figure 5.6: SEM solution - Explosion at z = −200 km. Here, a spurious S-wave
can be clearly distinguished.

108 Chapter 5. Evaluation of the SEM in 3-D

0 10 20 30 40 50 60 70 80 90

300

400

500

600

700

800

SEM x−component

time [s]

ep
ic

en
tr

al
 d

is
ta

nc
e

[k
m

]

(a)

0 10 20 30 40 50 60 70 80 90 100

300

400

500

600

700

800

SEM x−component

time [s]

ep
ic

en
tr

al
 d

is
ta

nc
e

[k
m

]

(b)

Figure 5.7: SEM solution - Explosion at z = 200 km. The spatial sampling
frequency is reduced to 5 points per wavelength for the S-wave for which the
erroneous phase is becoming more prominent. (a) Source is placed at an arbitrary
position inside the element. Theoretical arrival times are plotted as curved blue
lines across the seismograms for P- and S-wave. (b) Source is placed exactly at
one of the GLL points (ξ2, η4, ζ2).

5.1. Seismograms of the Simulations 109

0 10 20 30 40 50 60 70 80 90 100

300

400

500

600

700

800

SEM x−component

time [s]

ep
ic

en
tr

al
 d

is
ta

nc
e

[k
m

]

(a)

0 10 20 30 40 50 60 70 80 90 100

300

400

500

600

700

800

SEM z−component

time [s]

ep
ic

en
tr

al
 d

is
ta

nc
e

[k
m

]

(b)

Figure 5.8: SEM solution - Explosion at z = −10 km. Additionally to the P-wave
a strong Rayleigh wave can be observed.

110 Chapter 5. Evaluation of the SEM in 3-D

0 10 20 30 40 50 60 70 80 90 100

200

300

400

500

600

700

800
SEM x−component

time [s]

ep
ic

en
tr

al
 d

is
ta

nc
e

[k
m

]

(a)

0 10 20 30 40 50 60 70 80 90 100

300

400

500

600

700

800

SEM z−component

time [s]

ep
ic

en
tr

al
 d

is
ta

nc
e

[k
m

]

(b)

Figure 5.9: SEM solution - Dip-Slip source at z = −200 km. Here, direct P- and
S-waves are observed. Small wiggles coming after the S-wave are due to very low
spatial sampling of 5 points per wavelength.

5.1. Seismograms of the Simulations 111

0 10 20 30 40 50 60 70 80 90 100

200

300

400

500

600

700

800

SEM x−component

time [s]

ep
ic

en
tr

al
 d

is
ta

nc
e

[k
m

]

(a)

0 10 20 30 40 50 60 70 80 90 100

200

300

400

500

600

700

800

SEM z−component

time [s]

ep
ic

en
tr

al
 d

is
ta

nc
e

[k
m

]

(b)

Figure 5.10: SEM solution - Dip-Slip source at z = −10 km. In this case the
amplitude of the surface is very big so the P-wave can hardly be seen.

112 Chapter 5. Evaluation of the SEM in 3-D

5.2 Benchmark of CPU Time per Time Step

The performance of a numerical technique depends on the time needed to solve
a certain problem. In Chapter 4 a method was developed to determine the
performance as a combination of accuracy and CPU time per time step. Similar
to the 1-D case, a CPU benchmark of the FDM and SEM for three-dimensional
simulations was carried out. The number of runs and maximum model sizes are
more restricted in this case. Therefore, the sampling points and the number of
time steps used to calculate the mean value were significantly lower. One hundred
time steps for ten differently sized models were computed.
The result of the benchmark test is shown in Figure 5.11. From this picture it is
clear, that the SEM is much faster than the FD method. It has to be stated, that
the CPU time strongly depends on the implementation of the program code. This
may have an enormous effect of the outcome of the benchmark. All simulations for
the CPU benchmark were performed on a AMD AthlonTMXP 2400+ processor.

0 1 2 3 4 5 6

x 10
6

0

5

10

15

20

25

30

35

40

45

model size in number of grid points

m
ea

n
C

P
U

 ti
m

e
pe

r
tim

es
te

p

FDM: 8.5e−06 [s d(dx)]
SEM: 9.73e−07 [s d(dx)]

Figure 5.11: CPU benchmark of FDM and SEM for 3-D simulations. The SEM
is about 10 times faster than the FDM. The test was performed on a AMD
AthlonTMXP 2400+ processor and the memory needed for the biggest model was
1.6 GB in the SEM and 0.6 GB in the FDM simulations.

5.3. Comparison of Performance 113

5.3 Comparison of Performance: Difference in

Accuracy and Relative CPU Cost

5

10

15

5
10

15
20

25
30
0

2

4

6

8

10

points per wavelength

SEM HOM EXPL 200 Z

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

(a) SEM z-component

5

10

15

5
10

15
20

25
30
0

0.5

1

1.5

2

2.5

3

3.5

4

points per wavelength

FDM HOM EXPL 200 Z

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

(b) FDM z-component

Figure 5.12: Relative solution error - explosion at z = −200 km. Both methods
clearly show similar response to changes of ppw and npw. Surprisingly, the error
of the FD method is less than the SEM at a factor of 2. Two peaks are visible
at around 5 ppw and 10-15 npw in the error surface of the SEM, indicating the
spurious S-wave that occurs for this case.

114 Chapter 5. Evaluation of the SEM in 3-D

5

10

15

0

10

20

30

40
−2

0

2

4

6

8

points per wavelength

Difference in Accuracy EXPL 200

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

0

1

2

3

4

5

6

7

(a) Difference in accuracy: SEM - FDM z-component

4
6

8
10

12
14

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

Number of propagated wavelengths

Comparison of homogeneous models HOM EXPL 200

relative solution error [%]

re
la

tiv
e

C
P

U
 c

os
t

(b) Relative CPU cost: SEM / FDM z-component

Figure 5.13: Comparison of performance between SEM and FDM - explosion at
z = −200 km. The differential error surface between SEM and FDM represents
the higher error of the former. Nevertheless, the SEM is better when comparing
overall CPU cost. This is mostly due to the significantly better CPU benchmark
test of Section 5.2.

5.3. Comparison of Performance 115

5

10

15

5
10

15
20

25

0.5

1

1.5

2

points per wavelength

SEM HOM EXPL 10 Z

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

(a) SEM z-component

5

10

15

5
10

15
20

25

50

100

150

200

points per wavelength

FDM HOM EXPL 10 Z

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

(b) FDM z-component

Figure 5.14: Relative solution error - explosion at z = −10 km. These surfaces
depict a completely different view. Not only the perspective for the SEM surface
is changed by 180 degree (for better display), but also the difference in error
is huge. A feature that appears for both methods is the swell running through
the middle of the surfaces. This swell results from the surface-wave running out
of the considered time window for stations further away from the source. The
surface waves produces a higher error than the P-wave, because of fewer points
per wavelength at the same frequency. Therefore, at stations where no surface
waves arrive, the error is smaller. These figures show that the FD method is not
well suite for representing surface waves. The error rises steadily until the surface
waves disappear and drops to acceptable values for remote stations.

116 Chapter 5. Evaluation of the SEM in 3-D

5

10

15

5
10

15
20

25

−70

−60

−50

−40

−30

−20

−10

points per wavelengthNumber of propagated wavelengths

Difference in Accuracy HOM EXPL 10
re

la
tiv

e
so

lu
tio

n
er

ro
r

[%
]

(a) Difference in accuracy: SEM - FDM z-component

5
10

15
20

25

0.5

1

1.5

2

0.06

0.08

0.1

0.12

0.14

0.16

Relative CPU cost HOM EXPL 10

Number of propagated wavelengthsrelative solution error [%]

re
la

tiv
e

C
P

U
 c

os
t

(b) Relative CPU cost: SEM / FDM z-component

Figure 5.15: Comparison of performance between SEM and FDM - explosion at
z = −10 km. The differential surface displays the same feature mentioned before
(Fig. 5.14). CPU cost is by far lower for SEM.

5.3. Comparison of Performance 117

5

10

15

5
10

15
20

25
30

5

10

15

20

25

points per wavelength

SEM HOM DPS 200 Z

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

(a) SEM z-component

5

10

15

5
10

15
20

25
30

2

4

6

8

10

12

14

16

18

points per wavelength

FDM HOM DPS 200 Z

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

(b) FDM z-component

Figure 5.16: Relative solution error - dip-slip source at z = −200 km. For this
case the direct S-wave plays a significant role. The high values of both surfaces
for few npw result from a phase shift of the S-wave (Fig. 5.18). For stations afar,
only the P-wave is of relevance for the errors produced.

118 Chapter 5. Evaluation of the SEM in 3-D

5

10

15

5
10

15
20

25
30

−5

0

5

10

Number of propagated wavelengths

Difference in Accuracy HOM DPS 200

points per wavelength

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

−8

−6

−4

−2

0

2

4

6

8

10

12

(a) Difference in accuracy: SEM - FDM z-component

5

10

15

20

25

5

10

15

20

25

0.08
0.1

0.12
0.14
0.16

Number of propagated wavelengths

Relative CPU cost HOM DPS 200

relative solution error [%]

re
la

tiv
e

C
P

U
 c

os
t

(b) Relative CPU cost: SEM / FDM z-component

Figure 5.17: Comparison of performance between SEM and FDM - dip-slip source
at z = −200 km. For most of the considered values of npw and ppw the SEM
is more accurate than the FDM. Only a small band at few npw remain, where
the FDM seems to be better. Expectedly, the FDM is more expensive in terms
of CPU cost.

5.3. Comparison of Performance 119

0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Qseis blue − FDM green − SEM red

Figure 5.18: Comparison of the velocity of the z-component at receiver 30 between
Qseis (blue), FDM (green) and SEM (red) using 5 ppw for a dip-slip source in
200 km depth.

550 600 650 700 750 800 850 900 950 1000
−6

−4

−2

0

2

4

6

8

10
x 10

−4 FDM green − SEM red − Qseis blue DPS 10 rec 100 Z

time [100 ms]

no
rm

al
iz

ed
 v

el
oc

ity

Figure 5.19: Comparison of the velocity of the z-component at receiver 100 be-
tween Qseis (blue), FDM (green) and SEM (red) (5 ppw) for a dip-slip source in
10 km depth.

120 Chapter 5. Evaluation of the SEM in 3-D

5

10

15

5
10

15
20

25

2

4

6

8

10

points per wavelength

SEM HOM DPS 10 Z

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

(a) SEM z-component

5

10

15

5
10

15
20

25

0

50

100

150

200

250

300

points per wavelength

FDM HOM DPS 10 Z

Number of propagated wavelengths

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

(b) FDM z-component

Figure 5.20: Relative solution error - dip-slip source at z = −10 km. Here the
error of the SEM is below 2 % for most ppw and npw. At the stations where
the strong surface wave travel out of the corresponding time window, the error
rises enormous. The FD method show similar trends but at gigantic errors. The
behaviour of error with decreasing ppw is also different and more pronounced.
Nevertheless, the error is of around 20 % for stations that record only the P-wave.

5.3. Comparison of Performance 121

5

10

15

51015202530

−200

−150

−100

−50

0

Difference in Accuracy HOM DPS 10

Number of propagated wavelengthspoints per wavelength

re
la

tiv
e

so
lu

tio
n

er
ro

r
[%

]

−3000

−2500

−2000

−1500

−1000

−500

0

(a) Difference in accuracy: SEM - FDM z-component

5

10

15

20

25

10
20

30
40

50
60

70
80

90

0.05

0.1

0.15

Number of propagated wavelengths

Relative CPU cost HOM DPS 10

relative solution error [%]

re
la

tiv
e

C
P

U
 c

os
t

(b) Relative CPU cost: SEM / FDM z-component

Figure 5.21: Comparison of performance between SEM and FDM - dip-slip source
at z = −10 km. From these pictures it is clear that in the SEM the representation
of surface waves is much better than in FDM. Relative CPU cost is below a
maximum factor of SEM

FDM
= 0.2 for all investigated models.

Chapter 6

Discussion

After a describtion of the spectral element method in the first part of this thesis,
some characteristic features of the performance of the SEM in 1- and 3-D were
outlined in the second part. The previous chapter has demonstrated that the
SEM is the favorite method for 3-D calculations when compared to a classical
finite difference method. Nevertheless, in Chapter 4 the results presented reveal
that the “optimal operators”, an optimized FD method, may offer an alternative.
In this context some considerations are of interest to the discussion whether one
or the other method should be preferred. In order to put the results in perspective
one has to look at the complete picture. The comparisons performed depend on
the prerequisites of the simulations to a great extent.

To start with the 1-D case, one has to bear in mind that none of the Fortran
90/95 codes is written by professional programmers and moreover, neither of
them is designed to run optimally fast on a certain machine. Nevertheless, as
only the mean CPU time needed per time step was considered in the present
tests, all features that are not necessary for the solution of the wave equation
were turned off. For example the writing of seismograms or the plotting of the
1-D “wave-field” are not essential during the time loop.

In addition, the CPU benchmark is difficult as information on the load of the
processor by the Linux system itself is not easily available. The maximum per-
formance of each simulation in CPU load was thus not recorded. Therefore, one
has to be careful when judging by this CPU benchmark alone. A consequently
performed CPU benchmark should include comparisons on different machines and
architectures and also several different compilers. However, it has to be stated
again, that care was taken to test the programs on exactly the same computer.
On this machine no other processes, apart from those needed by the operating
system, were running to ensure a self-consited comparison.

Regarding the 3-D codes, the SEM code is certainly the more professional one
and thus for direct comparison the odds are more on the SEM side. Nevertheless,

123

124 Chapter 6. Discussion

as all programs of each respective comparison ran under the same conditions, the
trend given by the CPU benchmark can be used as a first clue. A future step
should consist of revising the programs, especially the FD code, to speed them
up to an optimum.

A further issue is the memory required by the simulations. As stated before, the
3-D FD code requires much less memory than the 3-D SEM code for the same
model size. At this point, it has to be made clear, that most of the additional
memory needed in the SEM results from the storage of the Jacobi-Matrices and
their Jabobians. These are a consequence of the mapping and thus allow for
deforming the elements and to adapt them to a certain shape. The FD code is
at this time only designed for equal grid spacing in all dimensions. Therefore
the codes offer different possibilities and cannot be compared directly in terms
of memory. A fair comparison of memory requirement could consist of choosing
the same mapping for all elements in the SEM and thus to reduce the number of
Jacobians to a single one.
The memory itself has an influence of the accuracy that can be achieved for
a considered simulation. Starting from given model dimensions, the memory
available limits the spatial sampling. The sampling itself governs the accuracy
and thus, an overall comparison must consist of a combination of the performance
criterion used in this thesis, the CPU cost and a test of accuracy when using the
same memory.
Moreover, the choice of time step dt and thus of the Courant value for the simu-
lations can be compared. In turn it might be interesting to compare methods,
with each using the highest Courant value possible.

An additional point that has to be discussed is the numerical dispersion and the
reliability of the quasi-analytical solution. From Figures 5.18 and 5.19 it becomes
clear that the error1 of the numerical solution is governed by the phase shift of
the S- or the surface waves. Thus, the relative error between SEM and FDM
may vary to a great extent, when shifting the seismograms to reduce the error in
phase of the S- and surface wave respectively. In this work the seismograms were
shifted to align the P phases.
Some problems occured in the quasi-analytical solution obtained from “Qseis”.
Small waves could be distinguished, which were not resulting from physics. Care
has to be taken therefore, when computing solution errors with such “quasi”-
analytical solutions. But, as both methods were compared to the same reference,
this only affects the absolute values, which cancel out in relative comparisons.

One can see from the above that many issues influence the output of comparisons
as such performed during this work. Keeping in mind the previous considerations,

1as defined in this thesis

Chapter 6. Discussion 125

one can state that on the one hand the SEM represents surface waves by far better
than the FD method. This is not surprising as the free surface condition is nat-
urally included in the SEM formalism. On the other hand, it was demonstrated
that the SEM is not suited for proper simulation of explosive sources. Numerical
anisotropy resulting from the source implementation is leading to spurious waves,
which may be misinterpreted in more complex cases than the homogeneous one
considered here.
In general the FDM needs much more points per wavelength than the SEM and
the maximum of 15, for which the resulting errors were computed, is still not
enough. Therefore, by looking at the results of the 1-D case, it seems highly rea-
sonable to pursue investigation on the optimal operators. The comparisons show
less numerical dispersion for OPO than for SEM and depending on the choice of
order for the spectral elements, the OPO are in many cases more accurate. The
overall CPU cost of both methods, by which was judged in this thesis, illustrates
that the OPO are preferable. But, up to now it is not clear how the OPO perform
for several boundary conditions, of which the free surface condition is of most in-
terest. Reducing the errors produced by FDM for surface waves seems inevitable
after this study. Therefore, a test of boundary conditions between OPO and SEM
in 1-D should be the next step. In a following step, 3-D comparisons to SEM will
then give more information on the performance of optimized FD methods.

At last, it should be emphasized that additional aspects were not treated in this
thesis. One of the undisputable advantages of the SEM is the representation of
complex geometry. Simulations published up to the present day have shown that
the SEM is capable to solve a variety of problems that emerge in geoscience.

Summary

The objective of this thesis was to review and describe the spectral element
method for the simulation of elastic wave propagation in detail and to compare
it with different finite difference methods. Especially an optimized version of the
FD operators, the optimal operators, was of interest herefore.

The SEM is a sophisticated numerical technique and is an extension of the finite
element method. In the first part, the theory and concepts of the SEM were
explained in detail for the one-dimensional wave equation in Chapter 2 at first,
and later also for 3-D cases. It was demonstrated that the SEM is based on the
variational formulation of the PDE and that this can be used for a convenient
decomposition of the model domain into elements. For simplification of further
calculations a coordinate transformation was defined to map each of those ele-
ments onto the interval Λ = [−1, 1]nd

. All functions are then considered on this
standard domain for the elements separately. When differentiated or integrated
functions are needed, the Jacobi-Matrix or its determinant the Jacobian appear
as additional terms in the equations.
In order to further discretize the model, the functions are interpolated on Λ using
Lagrange polynomials and the Lagrangian interpolation scheme. Numerical inte-
gration is done by means of the Gauss-Lobatto-Legendre quadrature, for which
the associated collocation points and integration weights are needed. Applying
interpolation and numerical integration to the decomposed variational formula-
tion results in two matrices defined for every element. These are the mass and
stiffness matrix, respectively. Assembling the elemental matrices leads to a global
linear system of equations, that can be solved in time using a matrix formulation.
The key feature of the SEM is the combination of Lagrange polynomials defined
on the Gauss-Lobatto-Legendre collocation points and the GLL quadrature. It
leads to an exactly diagonal mass matrix, whose inversion is thus trivial for the
solution of the global linear system. A different type of interpolating functions
was also introduced for the use in SEM in Chapter 2.

In the second part of the thesis, results of different simulations and comparisons
first between different time schemes for the SEM and later between the best
performing SEM and two FD methods were shown. It turned out that a new

127

128 Summary

criterion for the comparison of the performance of numerical methods had to be
defined. This criterion was called “CPU cost” and consisted of a combination of
accuracy and CPU time per time step. A specially created model setup could be
used in a first step to calculate the relative solution error as a function of distance
and spatial numerical sampling. The former was expressed by dimensionless
numbers of propagated wavelengths and the latter is typically expressed as points
per wavelength. The results obtained from these calculations can be displayed
as surfaces. Inverting the surfaces leads to a relation giving the minimum ppw
needed to limit the error at distance npw. In a second step, a benchmark of
the CPU time per time step was performed to obtain the additional CPU time
needed for every additional grid point. Multiplication of this value with npw and
the associated minimum ppw gives the overall CPU cost for a certain problem.
Applying this method to 1-D and 3-D problems is possible, only for the latter
some restrictions due to the special model setup were needed. A comparison of
1-D SEM simulations using different time integration schemes indicated that a
predictor-multicorrector Newmark scheme is not the most efficient one in terms of
CPU cost, although in most cases the most accurate. Instead, an explicit second
order Newmark scheme using an acceleration formulation turned out to be the
best performing one. When comparing one-dimensional SEM simulations of dif-
ferent polynomial order, it becomes evident that the performance increases with
order N not only in accuracy but also in CPU time per time step. Nevertheless,
the time step has to be reduced for greater N because of the stability criterion
leading to a greater number of time steps for the same simulation time.
The focus of the evaluation was on comparing the SEM simulations with OPO
simulations for one-dimensional models. As these optimal operators are not yet
developed for boundary conditions, the models were built in such a way that
reflected waves from the boundaries were not recorded at the receivers in the
time window considered for the calculation of errors.
The benchmark of the CPU time per time step recovered that the OPO is the
fastest method compared to the SEM with several different polynomial orders.
For spectral elements with polynomial degree 5 the maximum possible Courant
value of the stability criterion was chosen. According to this a Courant value
for the OPO was used that led to the same time step as for the SEM. This
resulted in a better performance of the OPO for most ppw and npw investigated
here. The outcome of the comparison changed when using spectral elements with
polynomial order 8, but only when a maximum possible Courant value was used.
Extrapolation to the same time step as for OPO shows that again the OPO
performs better.

A last topic covered in this work was the comparison of the SEM with FDM
simulations for simple homogeneous three-dimensional models. Again, as for the
1-D case the, “CPU cost” was used as performance criterion. Two kinds of sources
were applied. An explosive source and a dip-slip source which was considered to

Summary 129

excite strong surface waves when put close to the free surface.
To a great surprise, the SEM exhibited a clearly visible direct S-wave in the case
of an explosion inside a homogeneous medium. The amplitude of the S-wave
was found to depend on the location inside the element containing the source. In
addition, the frequency band chosen for the source affected the S-wave. Numerical
anisotropy of the source implementation in the SEM is considered as explanation.
The comparisons of accuracy between SEM and FDM show significant difference,
especially for surface waves. The SEM is much more accurate, which reconfirms
that FDM needs much more points per wavelength than the SEM. Comparing
the overall CPU cost, the SEM is by far the better performing method.

The results of the second part of this thesis indicate that it might be interesting
to further investigate the optimal operators. Especially the implementation of
optimized boundary conditions and extension to 3-D simulations may lead to an
alternative to the well-performing spectral element method.

Appendix A

131

A.1. GLL Integration Weights and Collocation Points 133

A.1 The Integration Weights and Colloca-

tion Points of the Gauss-Lobatto-Legendre

quadrature

polynomial degree collocation points integration weights
N ξi ωi

2: 0 1.3333333333333333
± 1 0.3333333333333333

3: ± 0.4472135954999579 0.8333333333333334
± 1 0.1666666666666667

4: 0 0.7111111111111111
± 0.6546536707079772 0.5444444444444445
± 1 0.1000000000000000

5: ± 0.2852315164806451 0.5548583770354862
± 0.7650553239294647 0.3784749562978470
± 1 0.0666666666666667

6: 0 0.4876190476190476
± 0.4688487934707142 0.4317453812098627
± 0.8302238962785670 0.2768260473615659
± 1 0.0476190476190476

7: ± 0.2092992179024789 0.4124587946587038
± 0.5917001814331423 0.3411226924835044
± 0.8717401485096066 0.2107042271435061
± 1 0.0357142857142857

Table A.1: Collocation points and integration weights of the Gauss-Lobatto-
Legendre quadrature for order N = 2, . . . , 7.

134 Appendix A

polynomial degree collocation points integration weights
N ξi ωi

8: 0 0.3715192743764172
± 0.3631174638261782 0.3464285109730463
± 0.6771862795107377 0.2745387125001617
± 0.8997579954114602 0.1654953615608055
± 1 0.0277777777777778

9: ± 0.1652789576663870 0.3275397611838976
± 0.4779249498104445 0.2920426836796838
± 0.7387738651055050 0.2248893420631264
± 0.9195339081664589 0.1333059908510701
± 1 0.0222222222222222

10: 0 0.3002175954556907
± 0.2957581355869394 0.2868791247790080
± 0.5652353269962050 0.2480481042640284
± 0.7844834736631444 0.1871698817803052
± 0.9340014304080592 0.1096122732669949
± 1 0.0181818181818182

11: ± 0.1365529328549276 0.2714052409106962
± 0.3995309409653489 0.2512756031992013
± 0.6328761530318606 0.2125084177610211
± 0.8192793216440067 0.1579747055643701
± 0.9448992722228822 0.0916845174131962
± 1 0.0151515151515152

12: 0 0.2519308493334467
± 0.2492869301062400 0.2440157903066763
± 0.4829098210913362 0.2207677935661101
± 0.6861884690817575 0.1836468652035501
± 0.8463475646518723 0.1349819266896083
± 0.9533098466421639 0.0778016867468189
± 1 0.0128205128205128

Table A.2: Collocation points and integration weights of the Gauss-Lobatto-
Legendre quadrature for order N = 8, . . . , 12.

A.2. The Fortran 1-D SEM Program Code 135

A.2 The Fortran SEM Program Code for solv-

ing 1-D wave equation

The simulations outlined in Chapter 4 were performed with a serial Fortran
code. In addition to the standard libraries of the intel Fortran compiler,
the libraries of the freely available “pgplot” (c© CalTech) package were used.
They provide several subroutines for 2- and 3-D plotting and can be downloaded
from ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.tar.gz (Pear-
son [2002]).
In the following the reader can find:

• the parameter file of the 1-D code

• the main program elastic 1D

• a selection of subroutines

The main program is given in full length, whereas only those subroutines are
printed, that are especially needed for SEM simulations. These are in order of
their appearance in the Appendix:

− diff lagrange, calculates the collocation points, integration weights and
the derivatives of the Lagrange polynomials at all collocation points. It
makes use of three subroutines designed for spectral methods taken from
Funaro [1993], which were mentioned in Section 2.2.2. These are:

¦ VALEPO, calculates the values of Legendre polynomials at a given point

¦ ZELEGL, calculates the nodes of the GLL integration quadrature

¦ DELEGL, calculates the first derivative of the Lagrange polynomials at
the GLL quadrature points

The calculation of integration weights was implemented by myself using the
formula in equation (2.52) taken from Abramowitz & Stegun [1984].

− create x irreg, creates the 1-D grid, a vector containing the x-coordinates
of the nodes

− connect vec, assembles global vectors from elemental vectors (e.g. mass
“matrix”, see Section 2.1.5)

− connect mat, assembles global matrices from elemental matrices (e.g. stiff-
ness matrix)

− create S, creates the condensed stiffness matrix shown in Section 2.2.7
without using the subroutine connect mat

136 Appendix A

− calculate F, calculates the forces at each node of the grid, following the
theoretical considerations of Section 2.2.8

− get func at pos, calculates the value of a function at any point inside one
element, which values are known at the collocation points. It makes use of
subroutine

¦ lagrange any, which was taken from the CalTech [2002] SEM code
written by Dimitri Komatitsch and co-workers. It is the realisation of
equation (2.23)

− calc jacobian 1D, calculates the Jacobi-Matrix, the Jacobian and the
Jacobi-Matrix of the inverse mapping

− get shape 1D, calculates the 1-D shape functions at each node of all ele-
ments

Subroutine lagrange any was used in the original version by CalTech [2002].
Subroutines get shape 1D is based on the subroutine get shape 2D from that
code, but had to be changed to 1-D serial applications. As mentioned, the sub-
routines VALEPO,ZELEGL and DELEGL were taken from a set of routines by Funaro
[1993].
Subroutines, that are called by the main program, but not printed here are:

− create sem fname, defines a string used for output files

− gauss, ricker, ricker2and delta, define different source time functions

− setup ac array, defines different receiver arrays, specially designed for the
comparisons shown in 4

− plot 1D snapshot, plots 2-D graphs of the displacement field (snapshots)
during runtime

− calcanalyt2lay sem, calculates the corresponding analytical solution for
a homogeneous or two layer case for a delta-shaped source time func-
tion. Original version calcanalyt2lay was written by Tobias Metz (Metz
[2003])

− conv fft, calculates the convolution of two vectors using fast-fourier-
transform (fft)

− plot ac seismogram, plots different types of seismograms, depending on
the input of the program

− plot initial, plots the initial displacement field

A.2. The Fortran 1-D SEM Program Code 137

− write seismograms, creates output of the program, three files for every
receiver: synthetic and analytical solution and additional information

− write setup, creates output file containing information about the simula-
tion

In addition, the subroutine multiply S U is printed, which performs the matrix-
vector multiplication of the condensed stiffness matrix K with the displacement
vector u. The shape of the condensed stiffness matrix and the rules of the mul-
tiplication were explained in Section 2.2.7, pages 42 - 44. The stiffness matrix is
denoted by S in the codes for historic reasons.

The Parameter File (page 140)

The user can change several parameters to fit his requirements. He can choose:

− the order N of interpolating Lagrange polynomials

− the number of elements ne

− the type of the model (homogeneous,“two layer” model,heterogeneous)

− the type of the mesh, i.e. regular or irregular.

− the Length of the model

− the time to be simulated

− the Courant number of the stability criterion (time step dt is computed
according to the stability criterion (2.58) during runtime

− four different boundary conditions (“free surface”, rigid,periodic and ab-
sorbing boundaries)

− between a source or initial displacement field

− the type of the source: a delta peak in time, a gaussian and two ricker
wavelets are implemented

− the source position (only on GLL collocation points)

− the dominant frequency of the source time function

− four different receiver arrays

− several display options (runtime plotting, “gif” of “ps” output)

− an option to obtain ascii output

138 Appendix A

The Main Program (pages 141-141)

• Initialization

• Reading of input files:

– Parameter file (for details see description in Appendix A.2, page 137)

– meshfile (if irregular mesh is used)

– density and mu data files

• Preparations for the calculation of the stiffness and mass matrix

– Calculation of collocation points and integration weights

– Calculation of the first derivative of the Lagrange polynomials at the
collocation points

• Calculation of shape functions

• Calculation of Jacobi-Matrices and Jacobians

• Generation of a non-equidistant x-vector for run-time plotting of the dis-
placement field (Gauss-Lobatto-Legendre (GLL) points of each element are
not evenly distributed inside the intervall [-1,1])

• Calculation of the time step dt depending on the stability criterion

• Generation of the source signal (e.g. delta-peak or ricker-wavelet) or
reading of initial displacement field data

• Calculation of the elemental stiffness matrices (skipped, if calculation of
forces in time loop is preferred)

• Calculation of the elemental mass matrices

• Generation of the “connectivity-matrix” for the 1-D case

• Assembly of the global matrices M and if used K

• setup of receivers

• Inversion of the mass-matrix

• Time-Loop: Integration in the time domain (explicit scheme)

– Calculation of forces (if used)

– implementation of boundary conditions

– Calculation of displacement uti+1
at the next time step

• writing seismograms to output files

A.2. The Fortran 1-D SEM Program Code 139

Additional Subroutines

− diff lagrange (page 147)

− VALEPO (page 147)

− ZELEGL (page 148)

− DELEGL (page 148)

− create x irreg (page 148)

− connect vec (page 148)

− connect mat (page 148)

− create S (page 148)

− calculate F (page 149)

− lagrange any (page 149)

− calc jacobian1D (page 150)

− get shape1D (page 150)

− multiply S U (page 151)

− Newmark-type time schemes (page 151)

140 Appendix A

5
!1

)
=

 N

.t
ru

e
.

!2
)

=
 r

e
g

_
g

ri
d

_
fla

g

2
0

0
!3

)
=

 n
e

so

!4
)

=
 m

o
d

_
id

0
.6

0
!5

)
=

 t
m

a
x

1
.

!6
)

=
 L

e
n

g
th

0
.8

2
!7

)
=

 C
o

u
ra

n
t_

n
r

a
!8

)
=

 b
co

n
d

iti
o

n

.t
ru

e
.

!9
)

=
 s

rc
_

fla
g

5
7

!1
0

)
=

 s
rc

_
n

e

1
!1

1
)

=
 s

rc
_

N

r2
!1

2
)

=
 s

tf
p

a
r

3
0

.0
0

!1
3

)
=

 f
rq

d
0

!1
4

)
=

 a
rr

a
y_

id

0
.2

!1
5

)
=

 d
is

ta
n

ce

0
!1

6
)

=
 p

d
 (

p
lo

t
d

e
vi

ce
)

9
0

!1
7

)
=

 p
lo

t_
re

c_
n

r

.t
ru

e
.

!1
8

)
=

 c
o

n
vo

lu
te

.f
a

ls
e

.
!1

9
)

=
 p

e
rc

e
n

t

.t
ru

e
.

!2
0

)
=

 t
xt

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
!

D

e
sc

ri
p

tio
n

s
!_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

!1
)

=
 N

:
o

rd
e

r
o

f
L

a
g

ra
n

g
e

 p
o

ly
n

o
m

ia
ls

 f
o

r
in

te
rp

o
la

tio
n

 o
n

 t
h

e
 e

le
m

e
n

ts

!2
)

=
 r

e
g

_
g

ri
d

_
fla

g
:

".
tr

u
e

."
 if

 y
o

u
 w

a
n

t
to

 u
se

 a
 r

e
g

u
la

r
g

ri
d

!
E

ls
e

 "
D

A
T

A
_

m
e

sh
/m

e
sh

1
D

.d
a

t"
 is

 r
e

a
d

!3
)

=
 n

e
:

n
u

m
b

e
r

o
f

e
le

m
e

n
ts

 t
o

 u
se

 in
 t

h
e

 s
im

u
la

tio
n

!4
)

=
 m

o
d

_
id

:
tw

o
 c

h
a

ra
ct

e
r

st
ri
n

g
:

ty
p

e
 ’s

o
’ f

o
r

h
o

m
o

g
e

n
e

o
u

s
m

o
d

e
l ,

 ’s
t’

fo
r

tw
o

 la
ye

re
d

 c
a

se
,

!’s
h

’ f
o

r
h

e
te

ro
g

e
n

e
o

u
s.

!I

f
’s

t’
is

 g
iv

e
n

,
th

e
 f

ile
s

"D
A

T
A

_
m

u
e

/e
t_

s0
0

_
0

0
tw

o
_

m
u

e
.t

xt
"

a
n

d

!"
D

A
T

A
_

rh
o

/e
t_

s0
0

_
0

0
tw

o
_

rh
o

.t
xt

"
a

re
 r

e
a

d
.

T
h

e
y

b
o

th
 h

a
ve

 t
w

o
 e

n
tr

ie
s

fo
r

L
a

m
e

 c
o

n
st

a
n

t
m

u
e

 a
n

d
 r

h
o

!r

e
sp

e
ct

iv
e

ly
.

!I
f

’s
h

’ i
s

g
iv

e
n

,
th

e
 f

ile
s

"D
A

T
A

_
m

u
e

/e
h

_
sX

X
_

Y
Y

Y
Y

Y
_

m
u

e
.t

xt
"

a
n

d
 "

D
A

T
A

_
rh

o
/e

h
_

sX
X

_
Y

Y
Y

Y
Y

_
rh

o
.t

xt
"

a
re

 !r
e

a
d

,
w

h
e

re
 X

X
 is

 t
h

e
 c

o
rr

e
sp

o
n

d
in

g
 o

rd
e

r
N

<
1

0
0

 a
n

d
 Y

Y
Y

Y
Y

 is
 t

h
e

 n
u

m
b

e
r

o
f

e
le

m
e

n
ts

 n
e

 <
 1

0
0

0
0

0
.

!S
e

e
 d

e
sc

ri
p

tio
n

 in
 D

A
T

A
_

**
*/

R
E

A
D

M
E

 f
o

r
d

e
ta

ile
d

 in
fo

rm
a

tio
n

 o
n

 t
h

e
se

 f
ile

s.
 !5

)
=

 t
m

a
x:

 t
o

ta
l t

im
e

 t
o

 b
e

 s
im

u
la

te
d

!6
)

=
 L

e
n

g
th

:
le

n
g

th
 o

f
th

e
 m

o
d

e
l

!7
)

=
 C

o
u

ra
n

t_
n

r:
 C

o
u

ra
n

t
n

u
m

b
e

r
fo

r
st

a
b

ili
ty

 c
ri
te

ri
o

n

!8
)

=
 b

co
n

d
iti

o
n

:
b

o
u

n
d

a
ry

 c
o

n
d

iti
o

n
?

 O
n

e
 c

h
a

ra
ct

e
r

st
ri
n

g
.

’f’
 f

o
r

fr
e

e
 s

u
rf

a
ce

,
’r
’ f

o
r

ri
g

id

!b
o

u
n

d
a

ry
,

’a
’ f

o
r

a
b

so
rb

in
g

 b
o

u
n

d
a

ri
e

s
o

r
’p

’ f
o

r
p

e
ri
o

d
ic

 b
o

u
n

d
a

ry
 c

o
n

d
iti

o
n

s

!9
)

=
 s

rc
_

fla
g

:
".

tr
u

e
."

 if
 s

o
u

rc
e

 s
h

a
ll

b
e

 im
p

le
m

e
n

te
d

,
if

n
o

t
p

ro
g

ra
m

 n
e

e
d

s
in

iti
a

l c
o

n
d

iti
o

n
s

!f
ro

m
 f

ile
s

"D
A

T
A

_
in

iti
a

l/U
.t

xt
"

a
n

d
 "

−
/U

o
ld

.t
xt

"

!1
0

)
=

 s
rc

_
n

e
:

 s
o

u
rc

e
 p

o
si

tio
n

?
 (

e
.g

.
2

 f
o

r
e

le
m

e
n

t
2

 o
r

a
n

y
n

u
m

b
e

r
le

ss
 o

r
e

q
u

a
l t

o
 n

e
)

!1
1

)
=

 s
rc

_
N

:
so

u
rc

e
 p

o
si

tio
n

 in
si

d
e

 t
h

e
 e

le
m

e
n

t
g

iv
e

n
 b

y
sr

c_
n

e
?

 (
e

.g
.

b
e

tw
e

e
n

 0
 a

n
d

 N
−

1
)"

)

!1
2

)
=

 s
tf

p
a

r:
 s

o
u

rc
e

 t
im

e
 f

u
n

ct
io

n
?

 ’g
a

’ f
o

r
g

a
u

ss
ia

n
,

’r
1

’ f
o

r
ri
ck

e
r

w
a

ve
le

t,

!’r
2

’ f
o

r
fir

st
 d

e
ri
va

tiv
e

 o
f

th
e

 r
ic

ke
r,

 o
r

’d
e

’ f
o

r
a

 d
e

lta
 p

e
a

k!

!1
3

)
=

 f
rq

:
 if

 p
lo

t_
d

e
v

is
 n

o
t

3
 o

r
st

fp
a

r
is

 n
o

t
’d

e
’:

th
e

 d
o

m
in

a
n

t
fr

e
q

u
e

n
cy

 o
f

th
e

!r

ic
ke

r
w

a
ve

le
t

u
se

d
 f

o
r

p
lo

tt
in

g
 o

r
si

m
u

la
tio

n
,

re
sp

e
ct

iv
e

ly
.

!1
4

)
=

 a
rr

a
y_

id
:

ty
p

e
 o

f
re

ce
iv

e
r

a
rr

a
y

(c
h

a
ra

ct
e

r(
le

n
=

2
):

a
*=

2
4

0
,b

=
1

5
0

,c
=

1
0

0
,d

*=
1

;
!*

0
 =

 a
n

yw
h

e
re

,
*1

 =
 o

n
 G

L
L

 p
o

in
ts

)

!1
5

)
=

 d
is

ta
n

ce
:

if
a

rr
a

y_
id

 =
d

 (
o

n
ly

 o
n

e
 r

e
ce

iv
e

r)
:

P
le

a
se

 e
n

te
r

th
e

 s
o

u
rc

e
−

re
ce

iv
e

r
d

is
ta

n
ce

!(

<
=

 L
e

n
g

th
 −

 x
(s

o
u

rc
e

))

!1
6

)
=

 p
d

:
p

lo
t

d
e

vi
ce

 (
0

=
xw

in
d

o
w

,1
=

g
if,

2
=

p
s,

3
=

n
o

 p
lo

t,
4

=
lik

e
 0

 b
u

t
p

lo
t

o
n

ly
 s

e
is

m
o

g
ra

m
s,

!n
o

t
sn

a
p

sh
o

ts
)

!1
7

)
=

 p
lo

t_
re

c_
n

r:
 if

 m
o

re
 t

h
a

n
 o

n
e

 r
e

ce
iv

e
r

a
re

 u
se

d
,

p
lo

t
w

h
ic

h
 r

e
ce

iv
e

r
(n

u
m

b
e

r)

!1
8

)
=

 c
o

n
vo

lu
te

:
co

n
vo

lu
tio

n
 w

ith
 r

ic
ke

r
w

a
n

te
d

 f
o

r
p

lo
tt

in
g

,
w

h
e

n
 s

im
u

la
tin

g
 w

ith
 a

 d
e

lta
 p

e
a

k?
!"

.t
ru

e
."

 f
o

r
ye

s

!1
9

)
=

 p
e

rc
e

n
t:

 r
u

n
 t

im
e

 m
e

ss
a

g
e

 f
o

r
p

e
rc

e
n

t
o

f
n

t
w

a
n

te
d

?
 "

.t
ru

e
."

 f
o

r
ye

s

!2
0

)
=

 t
xt

:
if

o
u

tp
u

t
fil

e
s

(s
e

is
m

o
g

ra
m

s
a

t
a

ll
re

ce
iv

e
rs

 a
n

d
 a

d
d

iti
o

n
a

l s
e

tu
p

 f
ile

)
a

re
 w

a
n

te
d

!t

yp
e

 "
.t

ru
e

."

A.2. The Fortran 1-D SEM Program Code 141
P
R
O
G
R
A
M

el
as

ti
c_

1D

!P
ro

g
ra

m
 t

o
 s

o
lv

e
 t

h
e

 o
n

e
−

d
im

e
n

si
o

n
a

l w
a

ve
 e

q
u

a
tio

n
 w

ith
 a

 s
p

e
ct

ra
l e

le
m

e
n

t
m

e
th

o
d

!w
ri
tt

e
n

 b
y

B
e

rn
h

a
rd

 S
ch

u
b

e
rt

h
 2

0
0

3

!in
 t

h
e

 c
o

u
rs

e
 o

f
th

e
 d

ip
lo

m
a

 t
h

e
si

s
!?

?
?

?
?

 T
itl

e
 ?

?
?

?
?

?
!a

t
th

e
 D

e
p

a
rt

e
m

e
n

t
fo

r
E

a
rt

h
−

 a
n

d
 E

n
vi

ro
n

m
e

n
ta

l S
ci

e
n

ce
s,

 G
e

o
p

h
ys

ic
s

S
e

ct
io

n
,

o
f

th
e

!L
u

d
w

ig
−

M
a

xi
m

ili
a

n
s−

U
n

iv
e

rs
ity

 M
u

n
ic

h

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

!m
o

d
u

le
s

u
se

d

u
s
e

pl
ot

_m
od

!p
lo

tt
in

g
 t

o
o

ls
 b

a
se

d
 o

n
 p

g
p

lo
t

u
s
e

el
_s

pe
c_

pl
ot

!p
lo

tt
in

g
 s

u
b

ro
u

tin
e

s
n

e
e

d
e

d
 f

o
r

th
is

 p
ro

g
ra

m
u
s
e

so
ur

ce
!c

re
a

te
s

d
iff

e
re

n
t

so
u

rc
e

 t
im

e
 f

u
n

ct
io

n
s

u
s
e

w
rit

e_
da

ta
!u

se
d

 f
o

r
w

ri
tin

g
 s

e
is

m
o

g
ra

m
s

to
 o

u
tp

u
tf

ile
s

u
s
e

el
_a

rr
ay

!s
p

e
ci

fic
 a

rr
a

ys
 f

o
r

co
m

p
a

ri
so

n
 w

ith
 o

p
tim

a
l F

D
 o

p
e

ra
to

rs
u
s
e

se
m

_s
pe

c_
m

od
ul

es
!s

p
e

ci
fic

 s
u

b
ro

u
tin

e
s

n
e

e
d

e
d

 f
o

r
S

E
M

u
s
e

ja
co

bi
an

_m
od

!c
a

lc
u

la
tio

n
 o

f
th

e
 J

a
co

b
i−

M
a

tr
ix

 a
n

d
 J

a
co

b
ia

n

u
s
e

sh
ap

e_
m

od
!c

a
lc

u
la

tio
n

 o
f

sh
a

p
e

 f
u

n
ct

io
n

s
o

f
th

e
 m

a
p

p
in

g
u
s
e

se
m

_a
na

ly
t_

m
od

!c
a

lc
u

la
tio

n
 o

f
th

e
 c

o
rr

e
sp

o
n

d
in

g
 a

n
a

ly
tic

a
l s

o
lu

tio
n

u
s
e

si
gn

al
_p

ro
ce

ss
in

g
!s

u
b

ro
u

tin
e

s
fo

r
ff

t
a

n
d

 c
o

n
vo

lu
tio

n

u
s
e

m
in

m
ax

1d
!m

a
xi

/m
in

 o
f

a
 v

e
ct

o
r,

 u
se

d
 b

e
ca

u
se

 o
f

p
ro

b
le

m
s

in
 "

m
in

va
l"

u
s
e

m
in

m
ax

!m
a

xi
m

u
m

 o
r

m
in

im
u

m
 o

f
2

−
D

 o
r

3
−

D
 m

a
tr

ic
e

s

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

i
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
,
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

m
e

!e
le

m
e

n
ta

l m
a

ss
 m

a
tr

ic
e

s
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
,
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

D
L

!d
e

ri
va

tiv
e

s
o

f
L

a
g

ra
n

g
e

 p
o

ly
n

o
m

ia
ls

 d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
,
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

r
h
o
_
e

!d
e

n
si

ty
 in

 a
ll

e
le

m
e

n
ts

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
,
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

m
u
e
_
e

!e
la

st
ic

ity
 c

o
e

ff
ic

ie
n

t
m

u
 in

 a
ll

e
le

m
e

n
ts

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
,
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

v
e

!w
a

ve
 v

e
lo

ci
ty

 d
e

ri
ve

d
 f

ro
m

 r
h

o
 a

n
d

 m
u

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
,
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

g
r
e
e
n
s

!s
to

re
s

a
ll

se
is

m
o

g
ra

m
s

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
,
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

a
n
a
l
y
t
i
c
a
l

!a
ll

co
rr

e
sp

.
a

n
a

ly
tic

a
l s

o
lu

tio
n

s
(A

S
)

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
,
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

J
a
c
o
b
i

!J
a

co
b

i−
M

a
tr

ix
 (

J−
M

)o
f

th
e

 m
a

p
p

in
g

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
,
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

J
a
c
o
b
i
a
n

!d
e

te
rm

in
a

n
t

o
f

J−
M

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
,
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

J
a
c
o
b
i
_
i
n
v
e
r
s
e

!J
−

M
 o

f
th

e
 in

ve
rs

e
 m

a
p

p
in

g
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
,
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

s
h
a
p
e
1
D

!s
h

a
p

e
 f

u
n

ct
io

n
s

o
f

th
e

 m
a

p
p

in
g

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
,
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

d
e
r
s
h
a
p
e
1
D

!d
e

ri
va

tiv
e

s
o

f
th

e
 s

h
a

p
 f

u
n

ct
io

n
s

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

U

!d
is

p
la

ce
m

e
n

t
a

t
g

lo
b

a
l n

o
d

e
s

(t
im

e
st

e
p

 i)
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

U
n
e
w

!d
is

p
la

ce
m

e
n

t
a

t
g

lo
b

a
l n

o
d

e
s

(t
im

e
st

e
p

 i+
1

)
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

U
o
l
d

!d
is

p
la

ce
m

e
n

t
a

t
g

lo
b

a
l n

o
d

e
s

(t
im

e
st

e
p

 i−
1

)
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

U
_
i
n
i
t

!in
iti

a
l d

is
p

la
ce

m
e

n
t

fie
ld

 a
t

t=
0

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

U
o
l
d
_
i
n
i
t

!in
iti

a
l d

is
p

la
ce

m
e

n
t

fie
ld

 a
t

t=
 −

1
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

M
a
s
s

!g
lo

b
a

l m
a

ss
 m

a
tr

ix
 (

st
o

re
d

 a
s

a
 v

e
ct

o
r)

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

M
a
s
s
I
n
v

!in
ve

rs
e

 o
f

th
e

 m
a

ss
 m

a
tr

ix
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

F

!f
o

rc
e

s
a

t
g

lo
b

a
l n

o
d

e
s

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

R
h
o
_
g
l
o
b
a
l

!g
lo

b
a

lly
 d

e
fin

e
d

 d
e

n
si

ty
 n

e
e

d
e

d
 f

o
r

A
S

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

M
u
e
_
g
l
o
b
a
l

!g
lo

b
a

lly
 d

e
fin

e
d

 e
la

st
ic

ity
 c

o
e

ff
.

fo
r

A
S

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

x

!x
−

ve
ct

o
r

(s
p

a
tia

l c
o

o
rd

in
a

te
)

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

d
x

!d
is

ta
n

ce
 b

e
tw

e
e

n
 g

lo
b

a
l x

 p
o

in
ts

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

x
m
e
s
h

!d
e

fin
in

g
 t

h
e

 1
−

D
 m

e
sh

 (
2

 p
o

in
ts

 p
e

r
e

le
m

e
n

t)
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

d
e

!le
n

g
th

 o
f

th
e

 e
le

m
e

n
ts

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

x
i

!G
L

L
 q

u
a

d
ra

tu
re

 p
o

in
ts

 (
lo

ca
l c

o
o

rd
in

a
te

s)
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

x
i
d
i
f
f

!d
is

ta
n

ce
 b

e
tw

e
e

n
 G

L
L

 p
o

in
ts

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

w
e
i
g
h
t
s

!w
e

ig
h

ts
 o

f
th

e
 G

L
L

 in
te

g
ra

tio
n

 q
u

a
d

ra
tu

re

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

t

!t
im

e
 v

e
ct

o
r

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

s
r
c

!s
o

u
rc

e
 t

im
e

 f
u

n
ct

io
n

 f
o

r
th

e
 s

im
u

la
tio

n

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

s
t
f

!s
o

u
rc

e
 t

im
e

 f
u

n
ct

io
n

 f
o

r
co

n
vo

lu
tio

n
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

c
p
u

!c
p

u
 t

im
e

 f
o

r
e

a
ch

 t
im

e
 s

te
p

 (
p

ro
ce

ss
o

r
cl

o
ck

)
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

c
p
u
_
d
t

!c
p

u
 t

im
e

 f
o

r
e

a
ch

 t
im

e
 s

te
p

(f
o

r
b

e
n

ch
m

a
rk

in
g

)

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

s
e
i
s
m
o
g
r
a
m

!c
o

n
vo

lu
te

d
 s

e
is

m
o

g
ra

m
 f

o
r

p
lo

tt
in

g
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

c
o
n
v
_
a
n
a

!c
o

n
vo

lu
te

d
 A

S
 f

o
r

p
lo

tt
in

g
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

d
i
f
f
_
a
n
a

!e
rr

o
r

in
 A

S
 <

=
 d

is
cr

e
te

 s
a

m
p

lin
g

 in
 t

im
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

r
e
c
t
i
m
e
s

!s
p

e
ci

a
l t

im
e

 m
a

rk
s

n
e

e
d

e
d

 f
o

r
A

S
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

r
e
f
t
i
m
e
s

!s
p

e
ci

a
l t

im
e

 m
a

rk
s

n
e

e
d

e
d

 f
o

r
A

S
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

s
r
d

!s
o

u
rc

e
 r

e
ce

iv
e

r
d

is
ta

n
ce

 f
o

r
e

a
ch

 r
e

ce
iv

e
r

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

s
r
d
_
d
i
f
f

!d
is

ta
n

ce
s

b
e

tw
e

e
n

 r
e

ce
iv

e
rs

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

r
e
c
e
i
v
e
r
_
p
o
s

!x
 c

o
o

rd
in

a
te

s
o

f
re

ce
iv

e
rs

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n
,

d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

r
e
c
e
i
v
e
r
_
d
x

!d
is

ta
n

ce
 o

f
re

ce
iv

e
r

to
 n

e
a

re
st

 g
ri
d

n
o

d
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

d
t

!d
u

ra
tio

n
 o

f
tim

e
 s

te
p

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

d
x
m
i
n

!m
in

im
u

m
 v

a
lu

e
 o

f
d

x
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

v
_
m
a
x

!m
a

xi
m

u
m

 v
a

lu
e

 o
f

ve
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

v
_
m
i
n

!m
in

im
u

m
 v

a
lu

e
 o

f
ve

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

p
t

!p
e

ri
o

d
 o

f
th

e
 d

o
m

in
a

n
t

fr
e

q
u

e
n

cy
 o

f
a

 w
a

ve
le

t
g

iv
e

n
 b

y
1

/f
rq

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

s
o
u
r
c
e
_
p
o
s

!x
 c

o
o

rd
in

a
te

 o
f

th
e

 s
o

u
rc

e
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

d
i
f
f
_
g
r
e
e
n
s

!e
rr

o
r

in
 s

e
is

m
o

g
ra

m
 d

u
e

 t
o

 d
is

cr
e

te
 t

im
e

−
sa

m
p

lin
g

 (
o

n
ly

 f
o

r
p

lo
tt

in
g

)
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

c
p
u
_
d
t
_
m
e
a
n

!m
e

a
n

 v
a

lu
e

 o
f

cp
u

−
tim

e
 p

e
r

tim
e

 s
te

p

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

L
e
n
g
t
h

!L
e

n
g

th
 o

f
th

e
 m

o
d

e
l

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

d
x
_
m
e
a
n

!a
ve

ra
g

e
 o

f
d

is
ta

n
ce

 b
e

tw
e

e
n

 g
ri
d

 n
o

d
e

s

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

b
v
1
,

b
v
n
g

!v
a

lu
e

s
u

se
d

 f
o

r
ca

lc
u

la
tio

n
 o

f
a

b
so

rb
in

g
 b

o
u

n
d

a
ri
e

s
a

t
(1

,n
g

)
 d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

m
a
x
U
,

m
i
n
U

!m
a

xi
m

u
m

 a
n

d
 m

in
im

u
m

 v
a

lu
e

s
o

f
d

is
p

la
ce

m
e

n
t

u
se

d
 f

o
r

p
lo

tt
in

g
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

s
r
c
_
m
a
x
,

s
r
c
_
m
i
n

!m
a

xi
m

u
m

 a
n

d
 m

in
im

u
m

 v
a

lu
e

s
o

f
d

is
p

la
ce

m
e

n
t

u
se

d
 f

o
r

p
lo

tt
in

g
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

t
m
p

!d
u

m
m

y
va

ri
a

b
le

i
n
t
e
g
e
r
,
d
i
m
e
n
s
i
o
n
(
:
,
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

C

!C
o

n
n

e
ct

iv
ity

−
M

a
tr

ix

i
n
t
e
g
e
r
,
d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

r
e
c
e
i
v
e
r
_
i
x

i
n
t
e
g
e
r
,
d
i
m
e
n
s
i
o
n
(
:
)
,

a
l
l
o
c
a
t
a
b
l
e

:
:

n
u
m
_
e
l

i
n
t
e
g
e
r
,

d
i
m
e
n
s
i
o
n
(
1
:
2
)

:
:

e
l
_
s
t
e
p
_
i
x

i
n
t
e
g
e
r

N
,
n
e
,
n
g
,
N
G
N
O
D

!p
o

ly
n

.
o

rd
e

r,
n

u
m

b
e

r
o

f
e

le
m

e
n

ts
,n

u
m

b
e

r
o

f
g

ri
d

 p
o

in
ts

,n
u

m
b

e
r

o
f

a
n

ch
o

r
n

o
d

e
s

i
n
t
e
g
e
r

M
,
n
t
,

s
o
u
r
c
e
_
i
x
,

r
e
c
_
n
u
m
,

d
n
g
i
x
,
s
t
e
p
_
i
x

i
n
t
e
g
e
r

i
,
j
,
k
,
l

!in
d

ic
e

s

c
h
a
r
a
c
t
e
r
(
l
e
n
=
2
)

d
e
g

!s
tr

in
g

 f
o

r
N

c
h
a
r
a
c
t
e
r
(
l
e
n
=
3
)

g
i
f
_
n
u
m

!u
se

d
 f

o
r

co
rr

e
ct

 n
u

m
b

e
ri
n

g
 o

f
g

if−
o

u
tp

u
t

 c
h
a
r
a
c
t
e
r
(
l
e
n
=
5
0
)

m
u
e
_
f
i
l
e
,

r
h
o
_
f
i
l
e

!in
p

u
t

fil
e

s
c
h
a
r
a
c
t
e
r
(
l
e
n
=
5
0
)

f
n
a
m
e
1
,

s
e
t
u
p
f
i
l
e
,
p
l
o
t
_
f
i
l
e

!o
u

tp
u

t
fil

e
s

c
h
a
r
a
c
t
e
r
(
l
e
n
=
5
0
)

p
o
l
d
e
g
,
x
l
a
b
,

y
l
a
b
,

t
i
m
e

!s
tr

in
g

s
u

se
d

 f
o

r
p

lo
tt

in
g

c
h
a
r
a
c
t
e
r
(
l
e
n
=
1
0
0
)

p
l
o
t
_
d
e
v

!D
e

fin
iti

o
n

 o
f

fix
e

d
 P

a
ra

m
e

te
rs

:

i
n
t
e
g
e
r
,

p
a
r
a
m
e
t
e
r

:
:

N
G
N
O
D

=

2

!n
u

m
b

e
r

o
f

a
n

ch
o

r
n

o
d

e
s

u
se

d
 f

o
r

th
e

 s
h

a
p

e
 f

u
n

ct
io

n
s

o
f

th
e

 e
le

m
e

n
ts

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

!v
a

ri
a

b
le

s
th

a
t

ca
n

 b
e

 c
h

a
n

g
e

d
 b

y
th

e
 u

se
r

b
y

e
d

iti
n

g
 t

h
e

 f
ile

 "
p

a
rf

ile
"

(s
e

e
 a

ls
o

 f
o

r
d

e
sc

ri
p

tio
n

s)

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

t
m
a
x

!t
h

e
 d

u
ra

tio
n

 o
f

w
a

ve
 p

ro
p

a
g

a
tio

n
 t

o
 b

e
 s

im
u

la
te

d
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

C
o
u
r
a
n
t
_
n
r

!C
o

u
ra

n
t

n
u

m
b

e
r

fo
r

th
e

 s
ta

b
ili

ty
 c

ri
te

ri
o

n
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

f
r
q

!d
o

m
in

a
n

t
fr

e
q

u
e

n
cy

 o
f

w
a

ve
le

t
to

 b
e

 s
im

u
la

te
d

 o
r

co
n

vo
lu

te
d

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

d
i
s
t
a
n
c
e

!d
is

ta
n

ce
 o

f
re

ce
iv

e
r,

 w
h

e
n

 o
n

ly
 o

n
e

 is
 u

se
d

i
n
t
e
g
e
r

p
d

!p
lo

t
d

e
vi

ce
i
n
t
e
g
e
r

s
r
c
_
n
e

!n
u

m
b

e
r

o
f

e
le

m
e

n
t

to
 c

o
n

ta
in

 s
o

u
rc

e
i
n
t
e
g
e
r

s
r
c
_
N

!G
L

L
 p

o
in

t
a

t
w

h
ic

h
 t

h
e

 s
o

u
rc

e
 s

h
a

ll
b

e
 lo

ca
te

d
i
n
t
e
g
e
r

p
l
o
t
_
r
e
c
_
n
r

!p
lo

t
th

e
 s

e
is

m
o

g
ra

m
 o

f
re

ce
iv

e
r

n
u

m
b

e
r

..
.

 c
h
a
r
a
c
t
e
r
(
l
e
n
=
2
)

m
o
d
_
i
d

!f
la

g
 f

o
r

m
o

d
e

l t
yp

e
c
h
a
r
a
c
t
e
r
(
l
e
n
=
2
)

s
t
f
p
a
r

!f
la

g
 f

o
r

so
u

rc
e

 t
yp

e
c
h
a
r
a
c
t
e
r
(
l
e
n
=
2
)

a
r
r
a
y
_
i
d

!f
la

g
 f

o
r

a
rr

a
y

ty
p

e
c
h
a
r
a
c
t
e
r
(
l
e
n
=
1
)

b
c
o
n
d
i
t
i
o
n

!f
la

g
 f

o
r

b
o

u
n

d
a

ry
 c

o
n

d
iti

o
n

s
l
o
g
i
c
a
l

c
o
n
v
o
l
u
t
e

!f
la

g
 f

o
r

co
n

vo
lu

tio
n

 b
e

fo
re

 p
lo

tt
in

g
l
o
g
i
c
a
l

t
x
t

!f
la

g
 f

o
r

cr
e

a
tin

g
 a

sc
ii

o
u

tp
u

t
l
o
g
i
c
a
l

p
e
r
c
e
n
t

!f
la

g
 f

o
r

ru
n

−
tim

e
 d

is
p

la
y

o
f

p
e

rc
e

n
ta

g
e

l
o
g
i
c
a
l

s
r
c
_
f
l
a
g

!f
la

g
 if

 p
o

in
t

so
u

rc
e

 o
r

in
iti

a
l c

o
n

d
iti

o
n

s
l
o
g
i
c
a
l

r
e
g
_
g
r
i
d
_
f
l
a
g

!f
la

g
 if

 r
e

g
u

la
r

o
r

ir
re

g
u

la
r

g
ri
d

!e
n

d
 o

f
in

iti
a

liz
a

tio
n

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

!R
e

a
d

 p
a

ra
m

e
te

r
fil

e
 "

./
p

a
rf

ile
"

o
p
e
n
(

u
n

it
=
1
9
,
f
i
l
e
=
’

pa
rf

ile
’
)

!in
p

u
t

o
f

th
e

 p
a

ra
m

e
te

rs
 N

 (
d

e
g

re
e

 o
f

P
o

ly
n

o
m

ia
ls

),
 n

e
 (

n
u

m
b

e
r

o
f

e
le

m
e

n
ts

)

r
e
a
d
(
1
9
,
*
)

N

142 Appendix A

i
f

 (
N

≥

1
0

0
)

t
h
e
n

w
r
i
t
e

(0
,*

)
"

O
rd

er
 N

 >
 1

00
 is

 n
ot

 p
os

si
bl

e.
"

s
t
o
p

e
n
d
i
f

r
e
a
d

(1
9

,*
)

re
g

_
g

ri
d

_
fla

g
r
e
a
d

(1
9

,*
)

n
e

r
e
a
d

(1
9

,*
)

m
o

d
_

id
r
e
a
d

(1
9

,*
)

tm
a

x
r
e
a
d

(1
9

,*
)

L
e

n
g

th
r
e
a
d

(1
9

,*
)

C
o

u
ra

n
t_

n
r

r
e
a
d

(1
9

,*
)

b
co

n
d

iti
o

n
r
e
a
d

(1
9

,*
)

sr
c_

fla
g

r
e
a
d

(1
9

,*
)

sr
c_

n
e

r
e
a
d

(1
9

,*
)

sr
c_

N
r
e
a
d

(1
9

,*
)

st
fp

a
r

r
e
a
d

(1
9

,*
)

fr
q

r
e
a
d

(1
9

,*
)

a
rr

a
y_

id
r
e
a
d

(1
9

,*
)

d
is

ta
n

ce
r
e
a
d

(1
9

,*
)

p
d

r
e
a
d

(1
9

,*
)

p
lo

t_
re

c_
n

r
r
e
a
d

(1
9

,*
)

co
n

vo
lu

te
r
e
a
d

(1
9

,*
)

p
e

rc
e

n
t

r
e
a
d

(1
9

,*
)

tx
t

c
l
o
s
e

(1
9

)

!g
e

t
th

e
 s

o
u

rc
e

 in
to

 t
h

e
 c

o
rr

e
ct

 e
le

m
e

n
t

g
iv

e
n

 b
y

"s
rc

_
n

e
"

i
f

 (
sr

c_
N

 >
 N

)
t
h
e
n

d
o

w
h
i
l
e

 (
sr

c_
N

 >
 N

)
sr

c_
N

=
sr

c_
N

−
N

e
n
d
d
o

e
n
d
i
f

m
o

d
_

id
 =

t
r
i
m

(m
o

d
_

id
)

d
e

g
 =

 n
le

tt
e

rs
tr

in
g

(N
,2

)

!d
o

m
in

a
n

t
p

e
ri
o

d
 o

f
th

e
 w

a
ve

le
t

p
t=

1
./

fr
q

!c
re

a
te

 f
ile

n
a

m
e

 f
o

r
th

is
 r

u
n

!−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

fn
a

m
e

1
=

’’

i
f

 (
m

o
d

_
id

 =
=

 ’
so

’)

t
h
e
n

c
a
l
l

cr

ea
te

_s
em

_f
na

m
e(

fn
a

m
e

1
,’

eo
_s

’,N
,2

,n
e

,5
,a

rr
a

y_
id

)
e
l
s
e
i
f

 (
m

o
d

_
id

 =
=

 ’
st

’)

t
h
e
n

c
a
l
l

cr

ea
te

_s
em

_f
na

m
e(

fn
a

m
e

1
,’

et
_s

’,N
,2

,n
e

,5
,a

rr
a

y_
id

)
e
l
s
e
i
f

 (
m

o
d

_
id

 =
=

 ’
sh

’)

t
h
e
n

c
a
l
l

cr

ea
te

_s
em

_f
na

m
e(

fn
a

m
e

1
,’

eh
_s

’,N
,2

,n
e

,5
,a

rr
a

y_
id

)
e
n
d
i
f

!c
h

e
ck

 f
o

r
ir
re

g
u

la
r

g
ri
d

!−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

i
f

 (
re

g
_

g
ri
d

_
fla

g
 =

=
 .

tr
u

e
.)

t
h
e
n

a
l
l
o
c
a
t
e

(x
m

e
sh

(0
:n

e
),

d
e

(1
:1

))
xm

e
sh

(0
)=

0
d

e
(1

)=
1

./
f
l
o
a
t

(n
e

)*
L

e
n

g
th

d
o

 i=
1

,n
e

xm

e
sh

(i
)=

xm
e

sh
(i
−

1
)

+
 d

e
(1

)
e
n
d
d
o

e
l
s
e

!if
 ir

re
g

u
la

r
g

ri
d

 g
e

t
m

e
sh

 d
a

ta
 f

o
rm

 f
ile

 "
./

D
A

T
A

_
m

e
sh

/m
e

sh
1

D
.d

a
t"

o
p
e
n

(
u

n
it

=
2

4
,f

ile
=

’
D

A
T

A
_m

es
h/

m
es

h1
D

.d
at

’)
i=

0

d
o

r
e
a
d

(2
4

,*
,

e
n
d

=
5

0
0

)
i=

i+
1

e
n
d
d
o

5

0
0

c
l
o
s
e

(2
4

)

n

e
=

i−
1

a
l
l
o
c
a
t
e

(x
m

e
sh

(0
:n

e
),

d
e

(1
:n

e
))

o
p
e
n

(
u

n
it

=
2

4
,f

ile
=

’
D

A
T

A
_m

es
h/

m
es

h1
D

.d
at

’)
i=

0

d
o

r
e
a
d

(2
4

,*
,

e
n
d

=
7

0
0

)
xm

e
sh

(i
)

i=
i+

1

e
n
d
d
o

7

0
0

c
l
o
s
e

(2
4

)

d
o

 i=
1

,n
e d
e

(i
)=

xm
e

sh
(i
)−

xm
e

sh
(i
−

1
)

e
n
d
d
o

L

e
n

g
th

=
xm

e
sh

(n
e

)−
xm

e
sh

(0
)

e
n
d
i
f

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

!s
ta

rt
in

g
 t

h
e

 p
ro

g
ra

m
!−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

!c
a

lc
u

la
tin

g
 t

h
e

 t
o

ta
l n

u
m

b
e

r
o

f
n

o
d

e
s

n
g

 (
g

lo
b

a
l n

u
m

b
e

ri
n

g
)

n
g

 =
 N

 *
 n

e
 +

 1

M
 =

 N
 +

 1

!a
llo

ca
tin

g
 a

ll
m

a
tr

ic
e

s

a
l
l
o
c
a
t
e

(m
e

(0
:N

,1
:n

e
),

rh
o

_
e

(0
:N

,1
:n

e
),

m
u

e
_

e
(0

:N
,1

:n
e

),
ve

(0
:N

,1
:n

e
))

a
l
l
o
c
a
t
e

(M
a

ss
(1

:n
g

),
M

a
ss

In
v(

1
:n

g
),

U
(1

:n
g

),
F

(1
:n

g
),

x(
1

:n
g

),
U

o
ld

(1
:n

g
),

U
n

e
w

(1
:n

g
),

d
x(

1
:n

g
−

1
))

a
l
l
o
c
a
t
e

(R
h

o
_

g
lo

b
a

l(
1

:n
g

),
M

u
e

_
g

lo
b

a
l(
1

:n
g

))
a
l
l
o
c
a
t
e

(w
e

ig
h

ts
(0

:N
),

D
L

(0
:N

,0
:N

),
C

(1
:M

,1
:n

e
),

xi
(0

:N
),

xi
d

iff
(1

:N
))

a
l
l
o
c
a
t
e

(U
_

in
it(

1
:n

g
),

U
o

ld
_

in
it(

1
:n

g
))

a
l
l
o
c
a
t
e

(J
a

co
b

i(
0

:N
,1

:n
e

),
Ja

co
b

ia
n

(0
:N

,1
:n

e
),

Ja
co

b
i_

in
ve

rs
e

(0
:N

,1
:n

e
))

a
l
l
o
c
a
t
e

(s
h

a
p

e
1

D
(1

:N
G

N
O

D
,0

:N
),

d
e

rs
h

a
p

e
1

D
(1

:N
G

N
O

D
,0

:N
))

!c
le

a
ri
n

g
 a

ll
va

ri
a

b
le

s

M
a

ss
=

0
M

a
ss

In
v=

0
U

=
0

m
e

=
0

F
=

0
D

L
=

0
Ja

co
b

i=
0

Ja
co

b
ia

n
=

0
Ja

co
b

i_
in

ve
rs

e
=

0
sh

a
p

e
1

D
=

0
d

e
rs

h
a

p
e

1
D

=
0

C
=

0
U

o
ld

=
0

U
n

e
w

=
0

R
h

o
_

g
lo

b
a

l=
0

M
u

e
_

g
lo

b
a

l=
0

rh
o

_
e

=
0

m
u

e
_

e
=

0
m

in
U

=
h
u
g
e

(U
)

m
a

xU
=t
i
n
y

(U
)

!r
e

a
d

 t
h

e
 in

fo
rm

a
tio

n
 o

n
 e

la
st

ic
ity

 c
o

e
ff

ic
ie

n
t

m
u

 f
ro

m
 f

ile
!−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

i
f

 (
m

o
d

_
id

 =
=

 ’
sh

’)

t
h
e
n

m
u

e
_

fil
e

=
’

D
A

T
A

_m
ue

/’/
/f

n
a

m
e

1
(1

:1
2

)/
/’

_m
ue

.tx
t’

o
p
e
n

(
u

n
it

=
2

5
,f

ile
=

m
u

e
_

fil
e

)
i=

0
d
o

 i=
1

,n
e

d
o

 j=
0

,N r
e
a
d

(2
5

,*
)

m
u

e
_

e
(j
,i)

e
n
d
d
o

e
n
d
d
o

e
l
s
e
i
f

 (
m

o
d

_
id

 =
=

 ’
so

’)

t
h
e
n

m
u

e
_

fil
e

=
’

D
A

T
A

_m
ue

/’/
/f

n
a

m
e

1
(1

:4
)/

/’
00

_0
0h

om
_m

ue
.tx

t’
o
p
e
n

(
u

n
it

=
2

5
,f

ile
=

m
u

e
_

fil
e

)
r
e
a
d

(2
5

,*
)

m
u

e
_

e
(0

,1
)

m
u

e
_

e
 =

 m
u

e
_

e
(0

,1
)

st
e

p
_

ix
 =

 0
M

u
e

_
g

lo
b

a
l =

 m
u

e
_

e
(0

,1
)

e
l
s
e
i
f

 (
m

o
d

_
id

 =
=

 ’
st

’)

t
h
e
n

m
u

e
_

fil
e

=
’

D
A

T
A

_m
ue

/’/
/f

n
a

m
e

1
(1

:4
)/

/’
00

_0
0t

w
o_

m
ue

.tx
t’

o
p
e
n

(
u

n
it

=
2

5
,f

ile
=

m
u

e
_

fil
e

)
r
e
a
d

(2
5

,*
)

m
u

e
_

e
(0

,1
)

r
e
a
d

(2
5

,*
)

m
u

e
_

e
(N

,n
e

)
r
e
a
d

(2
5

,*
)

e
l_

st
e

p
_

ix
(1

)

A.2. The Fortran 1-D SEM Program Code 143
m

u
e

_
e

(:
,1

:e
l_

st
e

p
_

ix
(1

)−
1

)
=

 m
u

e
_

e
(0

,1
)

m
u

e
_

e
(:

,e
l_

st
e

p
_

ix
(1

):
n

e
)

=
 m

u
e

_
e

(N
,n

e
)

st
e

p
_

ix
 =

 N
 *

 (
e

l_
st

e
p

_
ix

(1
)−

1
)

+
 1

!c
re

a
tin

g
 t

h
e

 "
g

lo
b

a
l"

 M
u

e
−

ve
ct

o
r

!(
o

n
ly

 n
e

e
d

e
d

 f
o

r
th

e
 c

a
lc

u
a

lti
o

n
 o

f
th

e
 a

n
a

ly
tic

a
l s

o
lu

tio
n

)!
!−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

M
u

e
_

g
lo

b
a

l(
1

:s
te

p
_

ix
−

1
)

=
 m

u
e

_
e

(0
,1

)
M

u
e

_
g

lo
b

a
l(
st

e
p

_
ix

:n
g

)
=

 m
u

e
_

e
(N

,n
e

)

e
n
d
i
f

w
r
i
t
e

(0
,*

)
’’

w
r
i
t
e

(0
,*

)
’

**
**

**
**

**
**

**
**

 F
in

is
he

d
re

ad
in

g
m

ue
 d

at
a!

 *
**

**
**

**
**

**
**

**
’

c
l
o
s
e

(2
5

)

!r
e

a
d

 t
h

e
 d

e
n

si
ty

 in
fo

rm
a

tio
n

 f
ro

m
 f

ile
!−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

i
f

 (
m

o
d

_
id

 =
=

 ’
sh

’)

t
h
e
n

rh
o

_
fil

e
=

’
D

A
T

A
_r

ho
/’/

/f
n

a
m

e
1

(1
:1

2
)/

/’
_r

ho
.tx

t’
o
p
e
n

(
u

n
it

=
2

6
,f

ile
=

rh
o

_
fil

e
)

i=
0

d
o

 i=
1

,n
e

d
o

 j=
0

,N r
e
a
d

(2
6

,*
)

rh
o

_
e

(j
,i)

e
n
d
d
o

e
n
d
d
o

e
l
s
e
i
f

 (
m

o
d

_
id

 =
=

 ’
so

’)

t
h
e
n

rh
o

_
fil

e
=

’
D

A
T

A
_r

ho
/’/

/f
n

a
m

e
1

(1
:4

)/
/’

00
_0

0h
om

_r
ho

.tx
t’

o
p
e
n

(
u

n
it

=
2

6
,f

ile
=

rh
o

_
fil

e
)

r
e
a
d

(2
6

,*
)

rh
o

_
e

(0
,1

)
rh

o
_

e
 =

 r
h

o
_

e
(0

,1
)

st
e

p
_

ix
 =

 0
R

h
o

_
g

lo
b

a
l =

 r
h

o
_

e
(0

,1
)

e
l
s
e
i
f

 (
m

o
d

_
id

 =
=

 ’
st

’)

t
h
e
n

rh
o

_
fil

e
=

’
D

A
T

A
_r

ho
/’/

/f
n

a
m

e
1

(1
:4

)/
/’

00
_0

0t
w

o_
rh

o.
tx

t’
o
p
e
n

(
u

n
it

=
2

5
,f

ile
=

rh
o

_
fil

e
)

r
e
a
d

(2
5

,*
)

rh
o

_
e

(0
,1

)
r
e
a
d

(2
5

,*
)

rh
o

_
e

(N
,n

e
)

r
e
a
d

(2
5

,*
)

e
l_

st
e

p
_

ix
(2

)
i
f

 (
e

l_
st

e
p

_
ix

(1
)

≠
e

l_
st

e
p

_
ix

(2
))

t
h
e
n

w
r
i
t
e

(0
,*

)
’

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*’
w
r
i
t
e

(0
,*

)
’

**
*

 W

ar
ni

ng
!

 *

**
’

w
r
i
t
e

(0
,*

)
’

**
*

 P
ro

pe
rt

ie
s

ch
an

ge
 in

 d
if

fe
re

nt
 e

le
m

en
ts

 *
**

’
w
r
i
t
e

(0
,*

)
’

**
*

 N
ot

 a
 tw

o
la

ye
r

ca
se

 a
ny

m
or

e

**

*’
w
r
i
t
e

(0
,*

)
’

**
*

C
al

cu
la

tio
n

of
 a

n
an

al
yt

ic
al

 s
ol

ut
io

n
is

 n
ot

 p
os

si
bl

e!
**

*’
w
r
i
t
e

(0
,*

)
’

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*’
e
n
d
i
f

rh
o

_
e

(:
,1

:e
l_

st
e

p
_

ix
(2

)−
1

)
=

 r
h

o
_

e
(0

,1
)

rh
o

_
e

(:
,e

l_
st

e
p

_
ix

(2
):

n
e

)
=

 r
h

o
_

e
(N

,n
e

)
st

e
p

_
ix

 =
 N

 *
 (

e
l_

st
e

p
_

ix
(2

)−
1

)
+

 1

!c
re

a
tin

g
 t

h
e

 "
g

lo
b

a
l"

 R
h

o
−

ve
ct

o
r

!(
o

n
ly

 n
e

e
d

e
d

 f
o

r
th

e
 c

a
lc

u
a

lti
o

n
 o

f
th

e
 a

n
a

ly
tic

a
l s

o
lu

tio
n

)!
!−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

R
h

o
_

g
lo

b
a

l(
1

:s
te

p
_

ix
−

1
)

=
 r

h
o

_
e

(0
,1

)
R

h
o

_
g

lo
b

a
l(
st

e
p

_
ix

:n
g

)
=

 r
h

o
_

e
(N

,n
e

)

e
n
d
i
f

w
r
i
t
e

(0
,*

)
’’

w
r
i
t
e

(0
,*

)
’

**
**

**
**

**
**

**
 F

in
is

he
d

re
ad

in
g

de
ns

ity
 d

at
a!

 *
**

**
**

**
**

**
**

’
c
l
o
s
e

(2
6

)

!c
a

lc
u

la
tin

g
 t

h
e

 w
a

ve
 v

e
lo

ci
ty

 in
si

d
e

 e
a

ch
 e

le
m

e
n

t
!−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

d
o

 i=
1

,n
e

d
o

 j=
0

,N ve
(j
,i)

=
s
q
r
t

(m
u

e
_

e
(j
,i)

/r
h

o
_

e
(j
,i)

)

e
n
d
d
o

e
n
d
d
o

w
r
i
t
e

(0
,*

)
’’

w
r
i
t
e

(0
,*

)
’

st
ep

_i
x

=
 ’,

 s
te

p
_

ix

!c
a

lc
u

la
tin

g
 t

h
e

 d
e

ri
va

tiv
e

s
o

f
th

e
 la

g
ra

n
g

e
 p

o
ly

n
o

m
ia

ls
 a

t
th

e
 g

ll
n

o
d

e
s

!a
n

d
 g

e
tt

in
g

 t
h

e
 c

o
llo

ca
tio

n
 p

o
in

ts
 x

i(
i)
 a

n
d

 t
h

e
 w

e
ig

h
ts

 w
e

ig
h

ts
(i
)

fo
r

!t
h

e
 g

ll
in

te
g

ra
tio

n
 r

u
le

!−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

c
a
l
l

di

ff_
la

gr
an

ge
(N

,D
L

,w
e

ig
h

ts
,x

i)

!d
e

fin
in

g
 t

h
e

 m
a

p
p

in
g

 f
u

n
ct

io
n

 a
n

d
 t

h
e

 J
a

co
b

i m
a

tr
ix

!−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

c
a
l
l

ge

t_
sh

ap
e1

D
(s

h
a

p
e

1
D

,d
e

rs
h

a
p

e
1

D
,x

i)

c
a
l
l

ca

lc
_j

ac
ob

ia
n1

D
(J

a
co

b
i,J

a
co

b
ia

n
,J

a
co

b
i_

in
ve

rs
e

,s
h

a
p

e
1

D
,d

e
rs

h
a

p
e

1
D

,x
m

e
sh

)

!c
re

a
tin

g
 t

h
e

 c
o

rr
e

ct
 x

 v
e

ct
o

r
w

ith
 n

o
n

 e
q

u
id

is
ta

n
t

p
o

in
ts

c
a
l
l

cr

ea
te

_x
_i

rr
eg

(x
,x

m
e

sh
,s

h
a

p
e

1
D

)

d
o

 i=
1

,n
g

−
1 d
x(

i)
=

x(
i+

1
)−

x(
i)

e
n
d
d
o

!d
e

fin
in

g
 t

h
e

 t
im

e
 v

e
ct

o
r

!−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

!g

e
tt

in
g

 t
h

e
 s

ta
b

ili
ty

 c
ri
te

ri
o

n
 r

ig
h

t!

!c
h

e
ck

in
g

 if
 C

o
u

ra
n

t
n

u
m

b
e

r
is

 s
m

a
ll

e
n

o
u

g
h

 f
o

r
a

b
so

rb
in

g
 a

n
d

 p
e

ri
o

d
ic

 b
o

u
n

d
a

ry
 c

o
n

d
iti

o
n

s

i
f

 (
b

co
n

d
iti

o
n

 =
=

 ’
a’

)
t
h
e
n

i
f

 (
C

o
u

ra
n

t_
n

r
>

 0
.4

2
)

t
h
e
n

C
o

u
ra

n
t_

n
r

=
 0

.4
2

w
r
i
t
e

(0
,*

)
’’

w
r
i
t
e

(0
,*

)
’’

w
r
i
t
e

(0
,*

)
’

**
**

**
**

**
**

**
**

**
**

**
**

**
**

 W
A

R
N

IN
G

!
**

**
**

**
**

**
**

**
**

**
**

**
**

**
’

w
r
i
t
e

(0
,*

)
’’

w
r
i
t
e

(0
,*

)
’

**
 C

ou
ra

nt
 v

al
ue

 is
 to

o
hi

gh
 f

or
 a

bs
or

bi
ng

 b
ou

nd
ar

y
co

nd
iti

on
s!

 *
*’

w
r
i
t
e

(0
,*

)
’’

w
r
i
t
e

(0
,*

)
’

**
 C

ha
ng

in
g

th
e

C
ou

ra
nt

 v
al

ue
 to

 0
.4

2
(m

ax
im

um
 v

al
ue

 p
os

si
bl

e)
!

**
’

w
r
i
t
e

(0
,*

)
’’

w
r
i
t
e

(0
,*

)
’

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
’

w
r
i
t
e

(0
,*

)
’’

e
n
d
i
f

e
n
d
i
f

d

xm
in

 =
 m

in
_

ve
ct

o
r(

d
x)

v_

m
a

x=
m

a
x_

m
a

tr
ix

2
d

(v
e

)

d

t
=

 C
o

u
ra

n
t_

n
r

*
d

xm
in

/v
_

m
a

x

!S
ta

b
ili

ty
 C

ri
te

ri
o

n
!!

!!
!!

!!
!!

!!
!

w
r
i
t
e

(0
,*

)
’’

w
r
i
t
e

(0
,*

)
’

dt
 =

 ’,
 d

t

!c

a
lc

u
la

tin
g

 t
h

e
 n

u
m

b
e

r
o

f
tim

e
 s

te
p

s
to

 b
e

 e
va

lu
a

te
d

n

t
=

i
d
i
n
t

(t
m

a
x

/
d

t)

!a

llo
ca

tin
g

 a
ll

ve
ct

o
rs

,
w

h
ic

h
 le

n
g

th
 is

 d
e

p
e

n
d

e
n

t
o

n
 n

t

a
l
l
o
c
a
t
e

(t
(1

:n
t)

,s
rc

(1
:n

t)
,s

tf
(1

:n
t)

,c
p

u
(1

:n
t)

,c
p

u
_

d
t(

1
:n

t−
1

),
re

ct
im

e
s(

1
:n

t)
,r

e
ft

im
e

s(
1

:n
t)

)

t=

0

sr
c=

0

!t

im
e

 v
e

ct
o

r

t

=
 (

/
(

f
l
o
a
t

(i
),

 i=
1

,n
t)

 /
)*

d
t

!d
e

fin
in

g
 t

h
e

 s
o

u
rc

e
 t

e
rm

 o
r

th
e

 in
iti

a
l c

o
n

d
iti

o
n

s,
 d

e
p

e
n

d
in

g
 o

n
 s

rc
_

fla
g

!−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

i
f

 (
sr

c_
fla

g
 =

=
 .

tr
u

e
.)

t
h
e
n

!p

o
in

t
so

u
rc

e
 is

 u
se

d

!c

re
a

tin
g

 t
w

o
 s

o
u

rc
e

 t
im

e
 f

u
n

ct
io

n
s:

 d
e

lta
 p

e
a

k
in

 t
im

e
 f

o
r

!t

h
e

 s
o

lu
tio

n
 o

f
th

e
 w

a
ve

 e
q

u
a

tio
n

 =
>

 G
re

e
n

´s
 f

u
n

ct
io

n
 o

f
th

e

!m
o

d
e

l s
p

a
ce

!a

n
d

 a
 r

ic
ke

r
w

a
ve

le
t

w
ith

 d
o

m
in

a
n

t
p

e
ri
o

d
 p

t
w

h
ic

h
 is

 la
te

r

!c
o

n
vo

lu
te

d
 w

ith
 t

h
e

 G
re

e
n

´s
 f

u
n

ct
io

n
 t

o
 o

b
ta

in
 a

 s
yn

th
e

tic

!s
e

is
m

o
g

ra
m

i
f

 (
st

fp
a

r
=

=
 ’

ga
’)

t
h
e
n

c
a
l
l

ga

us
s(

sr
c,

d
t,

p
t)

st
f=

sr
c

e
l
s
e
i
f

 (
st

fp
a

r
=

=
 ’

r1
’)

t
h
e
n

c
a
l
l

ric

ke
r(

sr
c,

d
t,

p
t,

n
t)

144 Appendix A

st
f=

sr
c

e
l
s
e
i
f

 (
st

fp
a

r
=

=
 ’

r2
’)

t
h
e
n

c
a
l
l

ric

ke
r2

(s
rc

,d
t,

p
t,

n
t)

st
f=

sr
c

e
l
s
e
i
f

 (
st

fp
a

r
=

=
 ’

de
’)

t
h
e
n

c
a
l
l

de

lta
(n

t,
1

,d
t,

sr
c)

i
f

 (
p

d

≠
3

)
t
h
e
n

c
a
l
l

ric

ke
r2

(s
tf

,d
t,

p
t,

n
t)

e
n
d
i
f

e
n
d
i
f

e
l
s
e

!in

iti
a

l c
o

n
d

iti
o

n
s

a
re

 u
se

d

o
p
e
n

(
u

n
it

=
1

9
,f

ile
=

’
D

A
T

A
_i

ni
tia

l/’
//

fn
a

m
e

1
(1

:1
3

)/
/’

in
1.

tx
t’)

d
o

 i=
1

,n
g r
e
a
d

(1
9

,*
)

U
_

in
it(

i)

e
n
d
d
o

c
l
o
s
e

(1
9

)

o
p
e
n

(
u

n
it

=
1

9
,f

ile
=

’
D

A
T

A
_i

ni
tia

l/’
//

fn
a

m
e

1
(1

:1
3

)/
/’

in
2.

tx
t’)

d
o

 i=
1

,n
g r
e
a
d

(1
9

,*
)

U
o

ld
_

in
it(

i)

e
n
d
d
o

c
l
o
s
e

(1
9

)

U

=
U

_
in

it

U
o

ld
=

U
o

ld
_

in
it

e
n
d
i
f

!
cr

e
a

tin
g

 t
h

e
 e

le
m

e
n

ta
l m

a
ss

 m
a

tr
ic

e
s

m
e

!−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

d
o

 i=
1

,n
e

d
o

 j=
0

,N

m

e
(j
,i)

 =
 r

h
o

_
e

(j
,i)

 *
 J

a
co

b
ia

n
(j
,i)

 *
 w

e
ig

h
ts

(j
)

e
n
d
d
o

e
n
d
d
o

!c
re

a
tin

g
 t

h
e

 c
o

n
n

e
ct

iv
ity

 m
a

tr
ix

 f
o

r
th

e
 1

D
 c

a
se

!−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

C
=

0

d
o

 i=
1

,n
e

d
o

 j=
1

,M

C
(j
,i)

=
j+

(i
−

1
)*

N

e
n
d
d
o

e
n
d
d
o

!c
o

n
n

e
ct

in
g

 t
h

e
 v

e
ct

o
rs

 m
e

 t
o

 M

!−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

c
a
l
l

co

nn
ec

t_
ve

c(
N

,n
e

,n
g

,m
e

,M
a

ss
,C

)

!if
 p

e
ri
o

d
ic

 b
o

u
n

d
a

ry
 c

o
n

d
iti

o
n

s
a

re
 u

se
d

 c
o

n
n

e
ct

 f
ir
st

 a
n

d
 la

st
 e

le
m

e
n

t

i
f

 (
b

co
n

d
iti

o
n

 =
=

 ’
p’

)
t
h
e
n

tm
p

=
0

.
tm

p
=

M
a

ss
(1

)
M

a
ss

(1
)=

M
a

ss
(1

)+
M

a
ss

(n
g

)
M

a
ss

(n
g

)=
M

a
ss

(n
g

)+
tm

p

e
n
d
i
f

d
e
a
l
l
o
c
a
t
e

(m
e

)

!A
d

d
in

g
 t

h
e

 b
o

u
n

d
a

ry
 c

o
n

d
iti

o
n

s
to

 t
h

e
 s

o
u

rc
e

 v
e

ct
o

r
F

!−

>
 s

e
e

 s
u

b
ro

u
tin

e
 c

a
lc

u
la

te
_

F
 in

 m
o

d
u

le
 s

e
m

_
sp

e
c_

m
o

d
u

le
s.

f9
0

!s
e

tt
in

g
 u

p
 t

h
e

 r
e

ce
iv

e
r

a
rr

a
y

a
cc

o
rd

in
g

 t
o

 a
rr

a
y_

id
!−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

!c
a

lc
u

la
tin

g
 t

h
e

 s
o

u
rc

e
 p

o
si

tio
n

so

u
rc

e
_

ix
 =

 (
sr

c_
n

e
−

1
)*

N
 +

 s
rc

_
N

so

u
rc

e
_

p
o

s
=

 x
(s

o
u

rc
e

_
ix

)

!c
a

lc
u

la
tin

g
 t

h
e

 r
e

ce
iv

e
r

p
o

si
tio

n
s

i
f

 (
a

rr
a

y_
id

(1
:1

)
=

=
 ’

d’
)

t
h
e
n

re
c_

n
u

m
 =

 1
p

lo
t_

re
c_

n
r

=
 1

e
l
s
e
i
f

 (
a

rr
a

y_
id

(1
:1

)
=

=
 ’

a’
)

t
h
e
n

re
c_

n
u

m
 =

 2
4

0

e
l
s
e
i
f

 (
a

rr
a

y_
id

(1
:1

)
=

=
 ’

b’
)

t
h
e
n

re
c_

n
u

m
 =

 1
5

0

e
l
s
e
i
f

 (
a

rr
a

y_
id

(1
:1

)
=

=
 ’

c’
)

t
h
e
n

re
c_

n
u

m
 =

 1
0

0

e
n
d
i
f

a
l
l
o
c
a
t
e

(r
e

ce
iv

e
r_

ix
(1

:r
e

c_
n

u
m

),
sr

d
(1

:r
e

c_
n

u
m

),
sr

d
_

d
iff

(1
:r

e
c_

n
u

m
−

1
))

a
l
l
o
c
a
t
e

(r
e

ce
iv

e
r_

p
o

s(
1

:r
e

c_
n

u
m

),
n

u
m

_
e

l(
1

:r
e

c_
n

u
m

))
a
l
l
o
c
a
t
e

(r
e

ce
iv

e
r_

d
x(

1
:r

e
c_

n
u

m
))

sr

d
 =

 0
.

sr

d
_

d
iff

 =
 0

.

re
ce

iv
e

r_
p

o
s

=
 0

.

re
ce

iv
e

r_
ix

 =
 0

re

ce
iv

e
r_

d
x

=
 0

.

i
f

 (
a

rr
a

y_
id

(1
:1

)
=

=
 ’

d’
)

sr
d

(1
)

=
 d

is
ta

n
ce

c
a
l
l

se

tu
p_

ac
_a

rr
ay

(a
rr

a
y_

id
,s

o
u

rc
e

_
ix

,r
e

ce
iv

e
r_

ix
,r

e
c_

n
u

m
,s

rd
,s

rd
_

d
iff

,&

re

ce
iv

e
r_

p
o

s,
re

ce
iv

e
r_

d
x,

n
u

m
_

e
l,x

,x
m

e
sh

)

!a
llo

ca
tin

g
 t

h
e

 s
e

is
m

o
g

ra
m

a
l
l
o
c
a
t
e

(g
re

e
n

s(
1

:n
t,

1
:r

e
c_

n
u

m
))

!if
 p

lo
t_

d
e

v
is

 n
o

t
3

:
!p

re
p

a
ri
n

g
 t

h
e

 p
lo

t
!−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

i
f

 (
p

d

≠
3

)
t
h
e
n

i
f

 (
N

≥

1
0

)
t
h
e
n

 p
o

ld
e

g
 =

 "
Po

ly
no

m
ia

ls
 o

f
de

gr
ee

 "
//

d
e

g
(:

)
e
l
s
e

 p
o

ld
e

g
 =

 "
Po

ly
no

m
ia

ls
 o

f
de

gr
ee

 "
//

d
e

g
(2

:)
e
n
d
i
f

xl
a

b
=

"
x"

xl
a

b
=
t
r
i
m

(x
la

b
)

yl
a

b
=

"
D

is
pl

ac
em

en
t U

"
yl

a
b

=
t
r
i
m

(y
la

b
)

a
l
l
o
c
a
t
e

(a
n

a
ly

tic
a

l(
1

,1
:n

t)
,d

iff
_

a
n

a
(1

:r
e

c_
n

u
m

))
a
l
l
o
c
a
t
e

(c
o

n
v_

a
n

a
(1

:n
t)

)
co

n
v_

a
n

a
=

0
a

n
a

ly
tic

a
l(
1

,n
t/

2
:n

t)
=

1
.

!c
a

ll
co

n
v_

ff
t(

a
n

a
ly

tic
a

l(
p

lo
t_

re
c_

n
r,

:)
,s

tf
,c

o
n

v_
a

n
a

)
c
a
l
l

co

nv
_f

ft(
a

n
a

ly
tic

a
l(
1

,:
),

st
f,

co
n

v_
a

n
a

)

sr
c_

m
a

x=
1

.2
*m

a
x_

ve
ct

o
r(

co
n

v_
a

n
a

)
sr

c_
m

in
=

1
.2

*m
in

_
ve

ct
o

r(
co

n
v_

a
n

a
)

d
e
a
l
l
o
c
a
t
e

(c
o

n
v_

a
n

a
,a

n
a

ly
tic

a
l,d

iff
_

a
n

a
)

e
n
d
i
f

!c
a

lc
u

la
tin

g
 t

h
e

 s
o

lu
tio

n
 t

o
 t

h
e

 w
a

ve
 e

q
u

a
tio

n
!−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

!in
ve

rt
in

g
 t

h
e

 m
a

ss
 m

a
tr

ix

d
o

 i=
1

,n
g

 M

a
ss

In
v(

i)
 =

 1
.

/
M

a
ss

(i
)

e
n
d
d
o

d
e
a
l
l
o
c
a
t
e

(M
a

ss
)

A.2. The Fortran 1-D SEM Program Code 145
!*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

 t
im

e
 lo

o
p

 *
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

!−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

d
o

 i=
1

,n
t

i
f

 (
i =

=
 1

)
t
h
e
n

w
r
i
t
e

(0
,*

)
’’

w
r
i
t
e

(0
,*

)
’

**
**

**
**

**
**

**
**

**
**

 T
im

e
lo

op
 s

ta
rt

ed
!

**
**

**
**

**
**

**
**

**
**

*’
w
r
i
t
e

(0
,*

)
’’

e
n
d
i
f

!c
o

m
p

u
te

 t
h

e
 f

o
rc

e
 a

t
e

ve
ry

 g
ri
d

 p
o

in
t

o
f

th
e

 m
e

sh
 f

o
r

tim
e

st
e

p
 i

 F

=
0

i
f

 (
b

co
n

d
iti

o
n

 =
=

 ’
a’

)
t
h
e
n

!a

b
so

rb
in

g
 b

o
u

n
d

a
ri
e

s
b

v1
=

rh
o

_
e

(0
,1

)*
ve

(0
,1

)*
((

U
(1

)−
U

o
ld

(1
))

/d
t)

b
vn

g
=

rh
o

_
e

(N
,n

e
)*

ve
(N

,n
e

)*
((

U
(n

g
)−

U
o

ld
(n

g
))

/d
t)

c
a
l
l

ca

lc
ul

at
e_

F
(N

,n
e

,D
L

,w
e

ig
h

ts
,m

u
e

_
e

,U
,F

,C
,J

a
co

b
ia

n
,J

a
co

b
i_

in
ve

rs
e

,v
e

(s
rc

_
N

,s
rc

_
n

e
),

&

 s

rc
(i
),

sr
c_

n
e

,s
rc

_
N

,b
v1

,b
vn

g
,s

tf
p

a
r,

d
t)

e
l
s
e

c
a
l
l

ca

lc
ul

at
e_

F
(N

,n
e

,D
L

,w
e

ig
h

ts
,m

u
e

_
e

,U
,F

,C
,J

a
co

b
ia

n
,J

a
co

b
i_

in
ve

rs
e

,v
e

(s
rc

_
N

,s
rc

_
n

e
),

&

 s

rc
(i
),

sr
c_

n
e

,s
rc

_
N

,s
tf

p
a

r=
st

fp
a

r,
d

t=
d

t)

e
n
d
i
f

i
f

 (
b

co
n

d
iti

o
n

 =
=

 ’
p’

)
t
h
e
n

tm
p

=
0

.
tm

p
=

F
(1

)
F

(1
)=

F
(1

)+
F

(n
g

)
F

(n
g

)=
F

(n
g

)+
tm

p

e
n
d
i
f

!c
h

e
ck

in
g

 f
o

r
b

o
u

n
d

a
ry

 c
o

n
d

iti
o

n
s

i
f

 (
b

co
n

d
iti

o
n

 =
=

 ’
r’)

t
h
e
n

 U
n

e
w

(2
:n

g
−

1
)

=
 d

t*
*2

.
*

M
a

ss
In

v(
2

:n
g

−
1

)
*

F
(2

:n
g

−
1

)
+

 2
.*

U
(2

:n
g

−
1

)
−

 U
o

ld
(2

:n
g

−
1

)

e
l
s
e

 U
n

e
w

 =
 d

t*
*2

.
*

M
a

ss
In

v
*

F
 +

 2
.*

U
 −

 U
o

ld

e
n
d
i
f

!c
re

a
tin

g
 t

h
e

 G
re

e
n

´s
 f

u
n

ct
io

n
s

d
o

 j=
1

,r
e

c_
n

u
m

i
f

 (
a

rr
a

y_
id

(2
:2

)
=

=
 ’

0’
)

t
h
e
n

!r

e
ce

iv
e

rs
 s

o
m

e
w

h
e

re
 in

si
d

e
 t

h
e

 e
le

m
e

n
ts

c
a
l
l

ge

t_
fu

nc
_a

t_
po

s(
N

,n
u

m
_

e
l(
j)
,U

n
e

w
,g

re
e

n
s(

i,j
),

re
ce

iv
e

r_
p

o
s(

j)
,x

i,C
,x

m
e

sh
)

e
l
s
e
i
f

 (
a

rr
a

y_
id

(2
:2

)
=

=
 ’

1’
)

t
h
e
n

!r

e
ce

iv
e

rs
 e

xa
ct

ly
 o

n
 G

L
L

 p
o

in
ts

g

re
e

n
s(

i,j
)

=
 U

n
e

w
(r

e
ce

iv
e

r_
ix

(j
))

e
n
d
i
f

e
n
d
d
o

!if
 p

lo
t_

d
e

v
is

 n
o

t
3

:

!−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

i
f

 (
p

d

≠
3

∧

p
d

≠

4
)

t
h
e
n

!p
re

p
a

ri
n

g
 t

h
e

 p
lo

t

w
r
i
t
e

(t
im

e
,’

(F
10

.5
)’)

 t
(i
)

tim

e
 =

t
r
i
m

(t
im

e
)

!p
lo

t
th

e
 d

is
p

la
ce

m
e

n
t

a
t

tim
e

 (
i)
 o

n
 t

h
e

 in
te

rv
a

ll
[0

,1
]

i
f

 (
m

in
_

ve
ct

o
r(

U
n

e
w

)
<

 s
rc

_
m

in
)

t
h
e
n

m
in

U
=

1
.2

*m
in

_
ve

ct
o

r(
U

n
e

w
)

e
l
s
e

m

in
U

=
sr

c_
m

in
e
n
d
i
f

i
f

 (
m

a
x_

ve
ct

o
r(

U
n

e
w

)
>

 s
rc

_
m

a
x)

t
h
e
n

m
a

xU
=

1
.2

*m
a

x_
ve

ct
o

r(
U

n
e

w
)

e
l
s
e

m
a

xU
=

sr
c_

m
a

x
e
n
d
i
f

i
f

 (
p

d
 =

=
 1

)
t
h
e
n

i
f

 (
i =

=
 1

)
j=

0

i
f

 (
i =

=
 1

∨

m
o
d

(i
,5

0
)

=
=

 0
)

t
h
e
n

j=
i/5

0
 +

 1

g

if_
n

u
m

=
n

le
tt

e
rs

tr
in

g
(j
,3

)

p

lo
t_

fil
e

=
t
r
i
m

(’
D

A
T

A
_T

M
P/

’//
t
r
i
m

(f
n

a
m

e
1

(1
:1

3
))

//
’

nr
’//

t
r
i
m

(g
if_

n
u

m
))

c
a
l
l

pl

ot
_1

d_
sn

ap
sh

ot
(n

g
,
r
e
a
l

(x
),

r
e
a
l

(U
n

e
w

),
xl

a
b

,y
la

b
,p

o
ld

e
g

,
t
r
i
m

(p
lo

t_
fil

e
),

&

p
d

,t
im

e
,i,

r
e
a
l

(m
in

U
),

r
e
a
l

(m
a

xU
),

r
e
a
l

(s
o

u
rc

e
_

p
o

s)
)

e
n
d
i
f

e
l
s
e

c
a
l
l

pl

ot
_1

d_
sn

ap
sh

ot
(n

g
,
r
e
a
l

(x
),

r
e
a
l

(U
n

e
w

),
xl

a
b

,y
la

b
,p

o
ld

e
g

,’
D

A
T

A
_T

M
P/

’//
fn

a
m

e
1

,&

p

d
,t

im
e

,i,
r
e
a
l

(m
in

U
),

r
e
a
l

(m
a

xU
),

r
e
a
l

(s
o

u
rc

e
_

p
o

s)
)

e
n
d
i
f

e
l
s
e
i
f

 (
p

d
 =

=
 4

∧

i =
=

 n
t)

t
h
e
n

p
d

 =
 0

e
n
d
i
f

!p
re

p
a

re
 f

o
r

n
e

xt
 t

im
e

 s
te

p

 U

o
ld

=
U

 U

=
U

n
e

w

c
a
l
l

cp

u_
tim

e(
cp

u
(i
))

i
f

 (
p

e
rc

e
n

t
=

=
 .

tr
u

e
.

∧
p

d

≠
0

∧

n
t

>
 5

0
0

0
)

t
h
e
n

i
f

 (
m
o
d

(i
,1

0
)

=
=

 0
)

t
h
e
n

w
r
i
t
e

(0
,*

)
(

f
l
o
a
t

(i
)/

f
l
o
a
t

(n
t)

*1
0

0
.)

,’
 %

 d
on

e’
w
r
i
t
e

(0
,*

)
’

cp
u

tim
e

=
’,

cp
u

(i
)

−
 c

p
u

(1
)

e
n
d
i
f

e
n
d
i
f

e
n
d
d
o

!*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

 e
n

d
 o

f
tim

e
 lo

o
p

 *
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
*

!−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

w
r
i
t
e

(0
,*

)
’’

w
r
i
t
e

(0
,*

)
’

**
**

**
**

**
**

**
**

**
**

 T
im

e
lo

op
 e

nd
ed

!
**

**
**

**
**

**
**

**
**

**
**

*’
w
r
i
t
e

(0
,*

)
’’

!c
a

lc
u

la
tin

g
 t

h
e

 m
e

a
n

 v
a

lu
e

 o
f

cp
u

 t
im

e
 n

e
e

d
e

d
 f

o
r

o
n

e
 t

im
e

 s
te

p
 d

t

d
o

 i=
1

,n
t−

1

 c
p

u
_

d
t(

i)
 =

 c
p

u
(i
+

1
)

−
 c

p
u

(i
)

e
n
d
d
o

cp
u

_
d

t_
m

e
a

n
 =

s
u
m

(c
p

u
_

d
t)

/
s
i
z
e

(c
p

u
_

d
t)

!if
 g

if−
 o

r
p

s−
fil

e
 is

 p
lo

tt
e

d

i
f

 (
p

d
 =

=
 1

)
t
h
e
n

c
a
l
l

pg

pa
ge

e
n
d
i
f

i
f

 (
p

d
 =

=
 2

)
t
h
e
n

c
a
l
l

pg

pa
ge

e
n
d
i
f

!c
a

lc
u

la
te

 t
h

e
 c

o
rr

e
sp

o
n

d
in

g
 a

n
a

ly
tic

a
l s

o
lu

tio
n

i
f

 (
p

d

≠
3

∨

tx
t

=
=

 .
tr

u
e

.)

t
h
e
n

!a

n
a

ly
tic

a
l s

o
lu

tio
n

 o
n

ly
 a

va
ila

b
le

 f
o

r
h

o
m

o
g

e
n

e
o

u
s

o
r

tw
o

 la
ye

re
d

 m
o

d
e

l

i
f

 (
m

o
d

_
id

 =
=

 ’
so

’
∨

m
o

d
_

id
 =

=
 ’

st
’)

t
h
e
n

a
l
l
o
c
a
t
e

(a
n

a
ly

tic
a

l(
1

:r
e

c_
n

u
m

,1
:n

t)
,d

iff
_

a
n

a
(1

:r
e

c_
n

u
m

))
i
f

 (
a

rr
a

y_
id

(2
:2

)
=

=
 ’

1’

∧
e

l_
st

e
p

_
ix

(1
)

=
=

 e
l_

st
e

p
_

ix
(2

))

t
h
e
n

c
a
l
l

ca

lc
an

al
yt

2l
ay

_s
em

(a
n

a
ly

tic
a

l,r
e

ce
iv

e
r_

ix
,d

t,
d

x,
so

u
rc

e
_

ix
,R

h
o

_
g

lo
b

a
l,M

u
e

_
g

lo
b

a
l,s

rc
,&

st
e

p
_

ix
,1

,d
iff

_
a

n
a

,r
e

ct
im

e
s,

re
ft

im
e

s)
e
l
s
e
i
f

 (
a

rr
a

y_
id

(2
:2

)
=

=
 ’

0’

∧
e

l_
st

e
p

_
ix

(1
)

=
=

 e
l_

st
e

p
_

ix
(2

))

t
h
e
n

c
a
l
l

ca

lc
an

al
yt

2l
ay

_s
em

(a
n

a
ly

tic
a

l,r
e

ce
iv

e
r_

ix
,d

t,
d

x,
so

u
rc

e
_

ix
,R

h
o

_
g

lo
b

a
l,M

u
e

_
g

lo
b

a
l,s

rc
,&

 s

te
p

_
ix

,1
,d

iff
_

a
n

a
,r

e
ct

im
e

s,
re

ft
im

e
s,

re
ce

iv
e

r_
d

x)
e
n
d
i
f

e
n
d
i
f

e
n
d
i
f

!if
 p

lo
t_

d
e

v
is

 n
o

t
3

:
!−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

146 Appendix A

i
f

 (
p

d

≠
3

)
t
h
e
n

!o

n
ly

 d
o

n
e

 w
h

e
n

 p
lo

tt
in

g
 is

 o
n

!if

 p
o

in
t

so
u

rc
e

 w
a

s
u

se
d

i
f

 (
sr

c_
fla

g
 =

=
 .

tr
u

e
.)

t
h
e
n

a
l
l
o
c
a
t
e

(c
o

n
v_

a
n

a
(1

:n
t)

)
co

n
v_

a
n

a
=

0
c
a
l
l

co

nv
_f

ft(
a

n
a

ly
tic

a
l(
p

lo
t_

re
c_

n
r,

:)
,s

tf
,c

o
n

v_
a

n
a

)

!g

e
t

co
n

vo
lu

te
d

 a
n

a
ly

tic
a

l s
o

lu
tio

n

!if

 s
im

u
la

tio
n

 u
se

d
 d

e
lta

 p
e

a
k

in
 t

im
e

 t
h

e
n

 c
h

e
ck

 f
o

r
co

n
vo

lu
tio

n
−

fla
g

 "
co

n
vo

lu
te

"

i
f

 (
st

fp
a

r
=

=
 ’

de
’

∧
co

n
vo

lu
te

 =
=

 .
tr

u
e

.)

t
h
e
n

a
l
l
o
c
a
t
e

(s
e

is
m

o
g

ra
m

(1
:n

t)
)

c
a
l
l

co

nv
_f

ft(
g

re
e

n
s(

:,
p

lo
t_

re
c_

n
r)

,s
tf

,s
e

is
m

o
g

ra
m

)

!g
e

t
co

n
vo

lu
te

d
 s

e
is

m
o

g
ra

m
 a

t
re

ce
iv

e
r

!p
lo

t
g

re
e

n
s

fu
n

ct
io

n
,

a
n

a
ly

tic
a

l g
re

e
n

s
fu

n
ct

io
n

 t
o

g
e

th
e

r
w

ith
 c

o
n

vo
lu

te
d

 s
e

is
m

o
g

ra
m

 a
n

d

!a
n

a
ly

tic
a

l s
o

lu
tio

n
c
a
l
l

pl

ot
_a

c_
se

is
m

og
ra

m
(t

,g
re

e
n

s(
:,

p
lo

t_
re

c_
n

r)
,a

n
a

ly
tic

a
l(
p

lo
t_

re
c_

n
r,

:)
,&

’
D

A
T

A
_T

M
P/

’//
fn

a
m

e
1

,p
d

,s
e

is
m

o
g

ra
m

,c
o

n
v_

a
n

a
,s

tf
,&

d
iff

_
a

n
a

(p
lo

t_
re

c_
n

r)
,d

iff
_

g
re

e
n

s)

!if

 s
im

u
la

tio
n

 u
se

d
 d

e
lta

 p
e

a
k

in
 t

im
e

 a
n

d
 c

o
n

vo
lu

tio
n

 is
 n

o
t

w
a

n
te

d

e
l
s
e
i
f

 (
st

fp
a

r
=

=
 ’

de
’

∧
co

n
vo

lu
te

 =
=

 .
fa

ls
e

.)

t
h
e
n

!p
lo

t
o

n
ly

 g
re

e
n

s
fu

n
ct

io
n

 a
n

d
 a

n
a

ly
tic

a
l g

re
e

n
s

fu
n

ct
io

n
c
a
l
l

pl

ot
_a

c_
se

is
m

og
ra

m
(t

=
t,

g
re

e
n

s=
g

re
e

n
s(

:,
p

lo
t_

re
c_

n
r)

,h
e

a
vy

si
d

e
=

&

a

n
a

ly
tic

a
l(
p

lo
t_

re
c_

n
r,

:)
,p

lo
t_

o
u

tf
ile

=
&

’
D

A
T

A
_T

M
P/

’//
fn

a
m

e
1

,p
d

=
p

d
,d

iff
_

a
n

a
=

d
iff

_
a

n
a

(p
lo

t_
re

c_
n

r)
)

!if

 s
im

u
la

tio
n

 u
se

d
 a

 b
a

n
d

 li
m

ite
d

 s
ig

n
a

l (
ri
ck

e
r,

 g
a

u
ss

i,
e

tc
.)

e
l
s
e
i
f

 (
st

fp
a

r
≠

’
de

’)

t
h
e
n

!p
lo

t
th

e
 s

im
u

la
te

d
 s

e
is

m
o

g
ra

m
 a

n
d

 t
h

e
 c

o
n

vo
lu

te
d

 c
o

rr
e

sp
o

n
d

in
g

 a
n

a
ly

tic
a

l s
o

lu
tio

n
c
a
l
l

pl

ot
_a

c_
se

is
m

og
ra

m
(t

=
t,

g
re

e
n

s=
g

re
e

n
s(

:,
p

lo
t_

re
c_

n
r)

,h
e

a
vy

si
d

e
=

co
n

v_
a

n
a

(1
:n

t)
,&

p
lo

t_
o

u
tf

ile
=

’
D

A
T

A
_T

M
P/

’//
fn

a
m

e
1

,p
d

=
p

d
,s

tf
=

st
f,

d
iff

_
a

n
a

=
d

iff
_

a
n

a
(p

lo
t_

re
c_

n
r)

)

e
n
d
i
f

!if

 in
iti

a
l c

o
n

d
iti

o
n

s
w

e
re

 u
se

d
 in

st
e

a
d

 o
f

a
 s

o
u

rc
e

e
l
s
e

!p
lo

t
in

iti
a

l c
o

n
d

iti
o

n
s

c
a
l
l

pl

ot
_i

ni
tia

l(x
,U

_
in

it,
U

o
ld

_
in

it,
p

lo
t_

o
u

tf
ile

=
’

D
A

T
A

_T
M

P/
’//

fn
a

m
e

1
,p

d
=

p
d

)

!p
lo

t
o

n
ly

 s
e

is
m

o
g

ra
m

,
a

n
a

ly
tic

a
l s

o
lu

tio
n

 is
 n

o
t

co
n

si
d

e
re

d
 h

e
re

c
a
l
l

pl

ot
_a

c_
se

is
m

og
ra

m
(t

=
t,

g
re

e
n

s=
g

re
e

n
s(

:,
p

lo
t_

re
c_

n
r)

,&

h

e
a

vy
si

d
e

=
(/

 (
0

.*
d
b
l
e

(i
),

i=
1

,
s
i
z
e

(g
re

e
n

s)
)

/)
,&

p
lo

t_
o

u
tf

ile
=

’
D

A
T

A
_T

M
P/

’//
fn

a
m

e
1

,p
d

=
p

d
)

e
n
d
i
f

e
n
d
i
f

!o
u

tp
u

t
fil

e
 w

a
n

te
d

?
!−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

i
f

 (
tx

t
=

=
 .

tr
u

e
.)

t
h
e
n

w
r
i
t
e

(0
,*

)
’’

w
r
i
t
e

(0
,*

)
’

**
**

**
**

**
**

**
**

 S
ta

rt
 w

ri
tin

g
se

is
m

og
ra

m
s!

 *
**

**
**

**
**

**
**

**
’

w
r
i
t
e

(0
,*

)
’’

d
o

 j=
1

,r
e

c_
n

u
m

!c
re

a
tin

g
 t

h
e

 a
n

a
ly

tic
a

l s
o

lu
tio

n

i
f

 (
a

rr
a

y_
id

(2
:2

)
=

=
 ’

0’
)

t
h
e
n

d
n

g
ix

 =
 s

rd
(j
)/

(s
rd

_
d

iff
(1

)/
(1

2
0

0
/r

e
c_

n
u

m
))

e
l
s
e
i
f

 (
a

rr
a

y_
id

(2
:2

)
=

=
 ’

1’
)

t
h
e
n

d
n

g
ix

 =
 r

e
ce

iv
e

r_
ix

(j
)

−
 s

o
u

rc
e

_
ix

e
n
d
i
f

!w
ri
tin

g
 s

e
is

m
o

g
ra

m
s

a
n

d
 r

e
ce

iv
e

r
in

fo
 t

o
 o

u
tp

u
t

fil
e

s

i
f

 (
st

fp
a

r
≠

’
de

’)

t
h
e
n

i=
s
i
z
e

(g
re

e
n

s(
:,

p
lo

t_
re

c_
n

r)
)+

s
i
z
e

(s
tf

)−
1

i
f

(
a
l
l
o
c
a
t
e
d

(c
o

n
v_

a
n

a
)

=
=

 .
fa

ls
e

.)

t
h
e
n

a
l
l
o
c
a
t
e

(c
o

n
v_

a
n

a
(1

:n
t)

)
e
n
d
i
f

co
n

v_
a

n
a

 =
 0

.
c
a
l
l

co

nv
_f

ft(
a

n
a

ly
tic

a
l(
j,:

),
st

f,
co

n
v_

a
n

a
)

a
n

a
ly

tic
a

l(
j,:

)
=

 c
o

n
v_

a
n

a
(1

:n
t)

e
n
d
i
f

c
a
l
l

w

rit
e_

se
is

m
og

ra
m

s(
fn

a
m

e
1

,g
re

e
n

s(
:,

j)
,a

n
a

ly
tic

a
l(
j,:

),
sr

d
(j
),

j,3
,d

n
g

ix
,&

 d

iff
_

a
n

a
=

d
iff

_
a

n
a

(j
))

e
n
d
d
o

!c
a

lc
u

la
tin

g
 t

h
e

 c
o

rr
e

sp
o

n
d

in
g

 m
e

a
n

 d
x

fo
r

e
ve

ry
 a

rr
a

y

i
f

 (
a

rr
a

y_
id

(2
:2

)
=

=
 ’

0’
)

t
h
e
n

d
x_

m
e

a
n

 =
 s

rd
_

d
iff

(1
)/

(1
2

0
0

/r
e

c_
n

u
m

)
e
l
s
e
i
f

 (
a

rr
a

y_
id

 =
=

 ’
d0

’)

t
h
e
n

d
x_

m
e

a
n

 =
 0

.
d

x_
m

e
a

n
 =

 s
rd

_
d

iff
(1

)/
(s

rd
_

d
iff

(1
)/

(L
/

f
l
o
a
t

(n
g

−
1

))
)

e
l
s
e
i
f

 (
a

rr
a

y_
id

 =
=

 ’
a1

’)

t
h
e
n

d
x_

m
e

a
n

 =

s
u
m

(s
rd

_
d

iff
)/

f
l
o
a
t

((
s
i
z
e

(s
rd

_
d

iff
)*

5
))

e
l
s
e
i
f

 (
a

rr
a

y_
id

 =
=

 ’
b1

’)

t
h
e
n

d
x_

m
e

a
n

 =

s
u
m

(s
rd

_
d

iff
)/

f
l
o
a
t

((
s
i
z
e

(s
rd

_
d

iff
)*

8
))

e
l
s
e
i
f

 (
a

rr
a

y_
id

 =
=

 ’
c1

’)

t
h
e
n

d
x_

m
e

a
n

 =

s
u
m

(s
rd

_
d

iff
)/

f
l
o
a
t

((
s
i
z
e

(s
rd

_
d

iff
)*

1
2

))
e
l
s
e
i
f

 (
a

rr
a

y_
id

 =
=

 ’
d1

’)

t
h
e
n

d
x_

m
e

a
n

 =
 (

x(
re

ce
iv

e
r_

ix
(1

))
 −

 x
(s

o
u

rc
e

_
ix

))
/

f
l
o
a
t

(r
e

ce
iv

e
r_

ix
(1

)
−

 s
o

u
rc

e
_

ix
)

e
n
d
i
f

!w

ri
te

 a
d

d
iti

o
n

a
l d

a
ta

 t
o

 s
e

tu
p

 f
ile

se
tu

p
fil

e
=

’
D

A
T

A
_T

M
P/

’//
t
r
i
m

(’
us

ed
se

tu
p_

’//
t
r
i
m

(f
n

a
m

e
1

)/
/’

.m
’)

v_
m

in
 =

 m
in

_
m

a
tr

ix
2

d
(v

e
)

i
f

 (
re

g
_

g
ri
d

_
fla

g
 =

=
 .

tr
u

e
.)

t
h
e
n

c
a
l
l

w

rit
e_

se
tu

p(
se

tu
p

fil
e

,N
,n

e
,m

o
d

_
id

,a
rr

a
y_

id
,d

t,
n

t,
L

e
n

g
th

,v
_

m
in

,&
 t

m
a

x,
cp

u
_

d
t_

m
e

a
n

,d
x_

m
e

a
n

,n
g

,r
e

c_
n

u
m

,s
o

u
rc

e
_

ix
,d

e
(1

))
e
l
s
e

c
a
l
l

w

rit
e_

se
tu

p(
se

tu
p

fil
e

,N
,n

e
,m

o
d

_
id

,a
rr

a
y_

id
,d

t,
n

t,
L

e
n

g
th

,v
_

m
in

,&
 t

m
a

x,
cp

u
_

d
t_

m
e

a
n

,d
x_

m
e

a
n

,n
g

,r
e

c_
n

u
m

,s
o

u
rc

e
_

ix
)

e
n
d
i
f

w
r
i
t
e

(0
,*

)
’’

w
r
i
t
e

(0
,*

)
’

**
**

**
**

**
**

**
*

Fi
ni

sh
ed

 w
ri

tin
g

se
is

m
og

ra
m

s!
 *

**
**

**
**

**
**

**
’

w
r
i
t
e

(0
,*

)
’’

e
n
d
i
f

!d
is

p
la

y
th

e
 a

va
ra

g
e

 c
p

u
−

tim
e

 p
e

r
tim

e
 s

te
p

w
r
i
t
e

(0
,*

)
’’

w
r
i
t
e

(0
,*

)
’

cp
u_

dt
_m

ea
n

=
 ’,

cp
u

_
d

t_
m

e
a

n
w
r
i
t
e

(0
,*

)
’’

E
N
D

P
R
O
G
R
A
M

el

as
ti

c_
1D

A.2. The Fortran 1-D SEM Program Code 147
M
O
D
U
L
E

se

m
_s

p
ec

_m
o

d
u

le
s

i
m
p
l
i
c
i
t

n
o
n
e

!*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
*

**
**

**
**

**
**

I
N
T
E
R
F
A
C
E S
U
B
R
O
U
T
I
N
E

d

if
f_

la
g

ra
n

g
e(

N
,D

L
,r

h
o

,x
i)

I
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 x
i(
0

:N
),

L
L

(0
:N

),
V

N
(0

:N
),

rh
o

(0
:N

)
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 D
L

(0
:N

,0
:N

)
i
n
t
e
g
e
r

 N
,i,

j,k

E
N
D

 S
U

B
R

O
U

T
IN

E
E
N
D

I
N
T
E
R
F
A
C
E

I
N
T
E
R
F
A
C
E

S
U
B
R
O
U
T
I
N
E

cr

ea
te

_x
_i

rr
eg

(x
,x

m
e

sh
,s

h
a

p
e

1
D

)

i
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
,:

)
::

 s
h

a
p

e
1

D
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
)

::
 x

,
xm

e
sh

i
n
t
e
g
e
r

 N
,n

e
,n

g
,N

G
N

O
D

,
is

p
e

c,
i,j

E
N
D

 S
U

B
R

O
U

T
IN

E
E
N
D

I
N
T
E
R
F
A
C
E

I
N
T
E
R
F
A
C
E S
U
B
R
O
U
T
I
N
E

co

n
n

ec
t_

ve
c(

N
,n

e
,n

g
,e

l,G
L

,C
)

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 e
l(
1

:N
+

1
,1

:n
e

),
 G

L
(1

:n
g

)

i
n
t
e
g
e
r

 C
(1

:N
+

1
,1

:n
e

)
i
n
t
e
g
e
r

 N
,n

e
,n

g
i
n
t
e
g
e
r

 i,
j,k

E
N
D

 S
U

B
R

O
U

T
IN

E
E
N
D

I
N
T
E
R
F
A
C
E

I
N
T
E
R
F
A
C
E S
U
B
R
O
U
T
I
N
E

co

n
n

ec
t_

m
at

(N
,n

e
,n

g
,e

l,G
L

,C
)

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 e
l(
1

:N
+

1
,1

:N
+

1
,1

:n
e

),
 G

L
(1

:n
g

,1
:n

g
)

i
n
t
e
g
e
r

 C
(1

:N
+

1
,1

:n
e

)
i
n
t
e
g
e
r

 N
,n

e
,n

g
i
n
t
e
g
e
r

 i,
j,k

E
N
D

 S
U

B
R

O
U

T
IN

E
E
N
D

I
N
T
E
R
F
A
C
E

I
N
T
E
R
F
A
C
E

S
U
B
R
O
U
T
I
N
E

cr

ea
te

_S
(N

,n
e

,n
g

,s
e

,S
)

i
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(0
:N

,0
:N

,1
:n

e
)

::
 s

e
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
,:

)
::

 S
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(0
:2

*N
)

::
 s

e
_

la
n

g

i
n
t
e
g
e
r

 N
,n

e
,n

g
,i,

j

E
N
D

S
U
B
R
O
U
T
I
N
E

cr

ea
te

_S
E
N
D

I
N
T
E
R
F
A
C
E

I
N
T
E
R
F
A
C
E

S
U
B
R
O
U
T
I
N
E

ca

lc
u

la
te

_F
(N

,n
e

,D
L

,w
e

ig
h

ts
,la

m
b

d
a

e
,U

,F
,C

,J
a

co
b

ia
n

,J
a

co
b

i_
in

ve
rs

e
,v

e
_

sr
c,

sr
c,

sr
c_

n
e

,s
rc

_
N

,b
v1

,b
vn

g
,s

tf
p

a
r,

d
t)

i
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(1
:N

+
1

,1
:n

e
)

::
 la

m
b

d
a

e
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(1
:N

+
1

,1
:N

+
1

)
::

 D
L

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
,:

)
::

 J
a

co
b

ia
n

,
Ja

co
b

i_
in

ve
rs

e
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
)

::
 U

,
F

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(1
:N

+
1

)
::

 f
e

,
w

e
ig

h
ts

,
tm

p
x1

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 s
rc

,
ve

_
sr

c,
 s

ig
m

a
,

tm
p

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
o
p
t
i
o
n
a
l

 :
:

b
v1

,
b

vn
g

,
d

t

i
n
t
e
g
e
r

,
d
i
m
e
n
s
i
o
n

(1
:N

+
1

,1
:n

e
)

::
 C

i
n
t
e
g
e
r

 i,
j,k

,l,
 is

p
e

c,
 N

,
n

e
,

sr
c_

n
e

,
sr

c_
N

c
h
a
r
a
c
t
e
r

(
l
e
n

=
2

),

o
p
t
i
o
n
a
l

 :
:

st
fp

a
r

E
N
D

 S
U

B
R

O
U

T
IN

E
E
N
D

I
N
T
E
R
F
A
C
E

I
N
T
E
R
F
A
C
E

S
U
B
R
O
U
T
I
N
E

g

et
_f

u
n

c_
at

_p
o

s(
N

,n
u

m
_

e
l,f

u
n

c,
o

u
tv

a
l,x

,x
ig

ll,
C

,x
_

a
n

ch
o

r
)

i
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
),

i
n
t
e
n
t

(
in

)
::

 f
u

n
c,

x_
a

n
ch

o
r

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
i
n
t
e
n
t

(
in

)
::

 x
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(1
:N

+
1

)
::

 l,
d

l,x
ig

ll
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 o
u

tv
a

l,
xi

_
lo

ca
l

i
n
t
e
g
e
r

,
d
i
m
e
n
s
i
o
n

(:
,:

),
i
n
t
e
n
t

(
in

)
::

 C
i
n
t
e
g
e
r

 i,
j,k

,
N

,n
u

m
_

e
l

E
N
D

 S
U

B
R

O
U

T
IN

E
E
N
D

I
N
T
E
R
F
A
C
E

E
N
D

M
O
D
U
L
E

se

m
_s

p
ec

_m
o

d
u

le
s

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

S
U
B
R
O
U
T
I
N
E

d

if
f_

la
g

ra
n

g
e(

N
,D

L
,r

h
o

,x
i)

! !c
a

lc
u

la
te

s
th

e
 d

e
ri
va

tiv
e

s
o

f
th

e
 L

a
g

ra
n

g
e

 P
o

ly
n

o
m

ia
ls

 a
t

th
e

 G
L

L

q
u

a
d

ra
tu

re

!p
o

in
ts

 a
n

d
 s

to
re

s
th

e
m

 in
 M

a
tr

ix
 D

L
 (

co
lo

u
m

n
 =

 d
 (

L
)/

d
 (

xi
)

=
 d

L
,

ro
w

 =
 d

L
 a

t
!p

o
in

t
xi

I
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 x
i(
0

:N
),

L
L

(0
:N

),
V

N
(0

:N
),

rh
o

(0
:N

)
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 D
L

(0
:N

,0
:N

)
i
n
t
e
g
e
r

 N
,i,

j,k

!C
a

lc
u

la
te

 t
h

e
 G

a
u

ß
−

L
o

b
a

tt
o

−
L

e
g

e
n

d
re

 Q
u

a
d

ra
tu

re
 p

o
in

ts
 a

n
d

 t
h

e
 v

a
lu

e
s

o
f

th
e

!L
e

g
e

n
d

re
 p

o
ly

n
o

m
ia

ls
 V

N
 a

t
th

e
 g

ll
n

o
d

e
s

c
a
l
l

m

ai
n_

po
l(x

i,N
,V

N
)

!c
a

lc
u

la
te

 t
h

e
 w

e
ig

h
ts

 r
h

o
(i
)

a
t

e
ve

ry
 g

ll
n

o
d

e
 f

o
r

th
e

 g
ll

in
te

g
ra

tio
n

 r
u

le

rh
o

 =
 2

 /
 (

f
l
o
a
t

((
N

+
1

)*
N

)
*

V
N

**
2

)

!c
a

lc
u

la
tin

g
 t

h
e

 d
e

ri
va

tiv
e

s
o

f
th

e
 P

o
ly

n
o

m
ia

ls
 a

t
th

e

G
a

u
ß

−
L

o
b

a
tt

o
−

L
e

g
e

n
d

re
 Q

u
a

d
ra

tu
re

 p
o

in
ts

d
o

 i=
0

,N

L
L

=
0

L
L

(i
)=

1

c
a
l
l

D

E
LE

G
L(

N
,x

i,V
N

,L
L

,D
L

(:
,i)

)

e
n
d
d
o

E
N
D

S
U
B
R
O
U
T
I
N
E

d

if
f_

la
g

ra
n

g
e

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
S
U
B
R
O
U
T
I
N
E

m

ai
n

_p
o

l(
xi

,N
,V

N
)

I
M
P
L
I
C
I
T

N
O
N
E

D
O
U
B
L
E

P
R
E
C
I
S
I
O
N

 X
,x

i(
0

:N
),

Y
,D

Y
,D

2
Y

,E
T

(0
:1

0
0

0
),

V
N

(0
:1

0
0

0
)

I
N
T
E
G
E
R

 j,
k,

N

D
O

 j=
0

,1
0

0
0

X
=

−
1

+
R
E
A
L

(j
)/

1
0

0
0

.*
2

C
A
L
L

Z

E
LE

G
L(

N
,E

T
,V

N
)

E
N
D
D
O

D
O

 j=
0

,N

xi
(j
)=

E
T

(j
)

E
N
D
D
O

E
N
D

S
U
B
R
O
U
T
I
N
E

m

ai
n

_p
o

l

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

S
U
B
R
O
U
T
I
N
E

V

A
L

E
P

O
(N

,X
,Y

,D
Y

,D
2

Y
)

 !*

 C
O

M
P

U
T

E
S

 T
H

E
 V

A
L

U
E

 O
F

 T
H

E
 L

E
G

E
N

D
R

E
 P

O
L

Y
N

O
M

IA
L

 O
F

 D
E

G
R

E
E

 N
!*

 A

N
D

 I
T

S
 F

IR
S

T
 A

N
D

 S
E

C
O

N
D

 D
E

R
IV

A
T

IV
E

S
 A

T
 A

 G
IV

E
N

 P
O

IN
T

!*

 N

=

 D
E

G
R

E
E

 O
F

 T
H

E
 P

O
L

Y
N

O
M

IA
L

!*

 X

=
 P

O
IN

T
 I

N
 W

H
IC

H
 T

H
E

 C
O

M
P

U
T

A
T

IO
N

 I
S

 P
E

R
F

O
R

M
E

D

!*

 Y

=
 V

A
L

U
E

 O
F

 T
H

E
 P

O
L

Y
N

O
M

IA
L

 I
N

 X
!*

 D

Y
 =

 V
A

L
U

E
 O

F
 T

H
E

 F
IR

S
T

 D
E

R
IV

A
T

IV
E

 I
N

 X
!*

 D

2
Y

=
 V

A
L

U
E

 O
F

 T
H

E
 S

E
C

O
N

D
 D

E
R

IV
A

T
IV

E
 I

N
 X

!

 I

M
P

L
IC

IT
 D

O
U

B
L

E
 P

R
E

C
IS

IO
N

 (
A

−
H

,O
−

Z
)

I
M
P
L
I
C
I
T

N
O
N
E

D
O
U
B
L
E

P
R
E
C
I
S
I
O
N

 Y
,D

Y
,D

2
Y

,X
,Y

P
,D

Y
P

,D
2

Y
P

,C
1

,C
2

,C
3

,C
4

,Y
M

,D
Y

M
,D

2
Y

M

I
N
T
E
G
E
R

 N
,I

 Y

 =
 1

.

 D

Y

=
 0

.

 D

2
Y

 =
 0

.

I
F

 (
N

≡

0
)

R
E
T
U
R
N

 Y

 =
 X

 D
Y

=

 1
.

 D
2

Y
 =

 0
.

I
F

(N

≡
1

)
R
E
T
U
R
N

 Y
P

 =

 1
.

 D

Y
P

=

 0
.

 D
2

Y
P

 =
 0

.

D
O

 I
=

2
,N

 C
1

 =
 D

F
L

O
A

T
(I

)

 C

2
 =

 2
.*

C
1

−
1

.

 C

4
 =

 C
1

−
1

.

 Y

M
 =

 Y

 Y

=

 (
C

2
*X

*Y
−

C
4

*Y
P

)/
C

1

 Y

P
 =

 Y
M

 D
Y

M

=
 D

Y

 D

Y

 =
 (

C
2

*X
*D

Y
−

C
4

*D
Y

P
+

C
2

*Y
P

)/
C

1

 D
Y

P

=
 D

Y
M

 D
2

Y
M

 =
 D

2
Y

 D
2

Y

=
 (

C
2

*X
*D

2
Y

−
C

4
*D

2
Y

P
+

2
.D

0
*C

2
*D

Y
P

)/
C

1

 D

2
Y

P
 =

 D
2

Y
M

E
N
D
D
O

R
E
T
U
R
N

E
N
D

S
U
B
R
O
U
T
I
N
E

V

A
L

E
P

O

 !_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

S
U
B
R
O
U
T
I
N
E

Z

E
L

E
G

L
(N

,E
T

,V
N

)

148 Appendix A

!*

 C
O

M
P

U
T

E
S

 T
H

E
 N

O
D

E
S

 R
E

L
A

T
IV

E
 T

O
 T

H
E

 L
E

G
E

N
D

R
E

 G
A

U
S

S
−

L
O

B
A

T
T

O
 F

O
R

M
U

L
A

!*

 N

=
 O

R
D

E
R

 O
F

 T
H

E
 F

O
R

M
U

L
A

!*

 E
T

 =
 V

E
C

T
O

R
 O

F
 T

H
E

 N
O

D
E

S
,

E
T

(I
),

 I
=

0
,N

!*

 V
N

 =
 V

A
L

U
E

S
 O

F
 T

H
E

 L
E

G
E

N
D

R
E

 P
O

L
Y

N
O

M
IA

L
 A

T
 T

H
E

 N
O

D
E

S
,

V
N

(I
),

 I
=

0
,N

 !

 I

M
P

L
IC

IT
 D

O
U

B
L

E
 P

R
E

C
IS

IO
N

 (
A

−
H

,O
−

Z
)

I
M
P
L
I
C
I
T

N
O
N
E

D
O
U
B
L
E

P
R
E
C
I
S
I
O
N

 S
N

,X
,Y

,D
Y

,D
2

Y
,P

I,
C

,E
T

X

D
O
U
B
L
E

P
R
E
C
I
S
I
O
N

 E
T

(0
:1

0
0

0
),

V
N

(0
:1

0
0

0
)

I
N
T
E
G
E
R

 N
,N

2
,I

,I
T

!

D

IM
E

N
S

IO
N

 E
T

(0
:*

),
 V

N
(0

:*
)

I
F

 (
N

≡

0
)

R
E
T
U
R
N

 N
2

 =
 (

N
−

1
)/

2

 S

N
 =

 D
F

L
O

A
T

(2
*N

−
4

*N
2

−
3

)

 E

T
(0

)
=

 −
1

.

 E

T
(N

)
=

 1
.

 V
N

(0
)

=
 S

N

 V

N
(N

)
=

 1
.

I
F

 (
N

≡

1
)

R
E
T
U
R
N

 E
T

(N
2

+
1

)
=

 0
.

 X
 =

 0
.

C
A
L
L

V

A
LE

P
O

(N
,X

,Y
,D

Y
,D

2
Y

)

 V

N
(N

2
+

1
)

=
 Y

I
F

(N

≡
2

)
R
E
T
U
R
N

 P
I

=
 3

.1
4

1
5

9
2

6
5

3
5

8
9

7
9

3
2

3
8

4
6

 C

=
 P

I/
D

F
L

O
A

T
(N

)

D
O

 I
=

1
,N

2

E

T
X

 =

D
C
O
S

(C
*D

F
L

O
A

T
(I

))

D
O

 I
T

=
1

,8

C
A
L
L

V

A
LE

P
O

(N
,E

T
X

,Y
,D

Y
,D

2
Y

)

 E

T
X

 =
 E

T
X

−
D

Y
/D

2
Y

E
N
D
D
O

E
T

(I
)

=
 −

E
T

X

E

T
(N

−
I)

 =
 E

T
X

V
N

(I
)

=
 Y

*S
N

V
N

(N
−

I)
 =

 Y

E
N
D
D
O

R
E
T
U
R
N

E
N
D

S
U
B
R
O
U
T
I
N
E

Z

E
L

E
G

L

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

S
U
B
R
O
U
T
I
N
E

D

E
L

E
G

L
(N

,E
T

,V
N

,Q
N

,D
Q

N
)

!*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
*

**
**

**

!*

C

O
M

P
U

T
E

S
 T

H
E

 D
E

R
IV

A
T

IV
E

 O
F

 A
 P

O
L

Y
N

O
M

IA
L

 A
T

 T
H

E
 L

E
G

E
N

D
R

E
 G

A
U

S
S

−
L

O
B

A
T

T
O

!*

N
O

D
E

S
 F

R
O

M
 T

H
E

 V
A

L
U

E
S

 O
F

 T
H

E
 P

O
L

Y
N

O
M

IA
L

 A
T

T
A

IN
E

D
 A

T
 T

H
E

 S
A

M
E

 P
O

IN
T

S

!*

 N

 =
 T

H
E

 D
E

G
R

E
E

 O
F

 T
H

E
 P

O
L

Y
N

O
M

IA
L

!*

 E

T

=
 V

E
C

T
O

R
 O

F
 T

H
E

 N
O

D
E

S
,

E
T

(I
),

 I
=

0
,N

!*

 V

N

=
 V

A
L

U
E

S
 O

F
 T

H
E

 L
E

G
E

N
D

R
E

 P
O

L
Y

N
O

M
IA

L
 A

T
 T

H
E

 N
O

D
E

S
,

V
N

(I
),

 I
=

0
,N

!*

 Q

N

=
 V

A
L

U
E

S
 O

F
 T

H
E

 P
O

L
Y

N
O

M
IA

L
 A

T
 T

H
E

 N
O

D
E

S
,

Q
N

(I
),

 I
=

0
,N

!*

 D
Q

N
 =

 D
E

R
IV

A
T

IV
E

S
 O

F
 T

H
E

 P
O

L
Y

N
O

M
IA

L
 A

T
 T

H
E

 N
O

D
E

S
,

D
Q

Z
(I

),
 I

=
0

,
N

!*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*
**

**
**

I
M
P
L
I
C
I
T

D
O
U
B
L
E

P
R
E
C
I
S
I
O
N

 (
A

−
H

,O
−

Z
)

!

 D

IM
E

N
S

IO
N

 E
T

(0
:*

),
 V

N
(0

:*
),

 Q
N

(0
:*

),
 D

Q
N

(0
:*

)

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 E
T

(0
:*

),
 V

N
(0

:*
),

 Q
N

(0
:*

),
 D

Q
N

(0
:*

)

D
Q

N
(0

)
=

 0
.D

0

I
F

 (
N

≡

0
)

R
E
T
U
R
N

D
O

 1
 I

=
0

,N

S

U
 =

 0
.D

0

V

I
=

 V
N

(I
)

E

I
=

 E
T

(I
)

D
O

 2
 J

=
0

,N

I
F

 (
I

≡
J)

G
O
T
O

 2

V

J
=

 V
N

(J
)

E

J
=

 E
T

(J
)

S

U
 =

 S
U

+
Q

N
(J

)/
(V

J*
(E

I−
E

J)
)

2

C
O
N
T
I
N
U
E

D

Q
N

(I
)

=
 V

I*
S

U

1

C
O
N
T
I
N
U
E

D
N

 =
 D

F
L

O
A

T
(N

)

C

=
 .

2
5

D
0

*D
N

*(
D

N
+

1
.D

0
)

D

Q
N

(0
)

=
 D

Q
N

(0
)−

C
*Q

N
(0

)

D
Q

N
(N

)
=

 D
Q

N
(N

)+
C

*Q
N

(N
)

R
E
T
U
R
N

E
N
D

S
U
B
R
O
U
T
I
N
E

D

E
L

E
G

L

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
!_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

S
U
B
R
O
U
T
I
N
E

cr

ea
te

_x
_i

rr
eg

(x
,x

m
e

sh
,s

h
a

p
e

1
D

)

!c
re

a
te

s
a

 n
o

n
 e

q
u

id
is

ta
n

t
x

ve
ct

o
r

o
f

le
n

g
th

 n
g

 c
o

rr
e

sp
o

n
d

in
g

 t
o

 t
h

e
 g

ll
n

o
d

e
s

!in
 e

a
ch

 e
le

m
e

n
t

a
n

d
 d

e
p

e
n

d
in

g
 o

n
 t

h
e

 x
−

ve
ct

o
r

xm
e

sh
.

i
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
,:

)
::

 s
h

a
p

e
1

D
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
)

::
 x

,
xm

e
sh

i
n
t
e
g
e
r

 N
,n

e
,n

g
,N

G
N

O
D

,
is

p
e

c,
i,j

N
=s
i
z
e

(s
h

a
p

e
1

D
,2

)−
1

n
e

=
s
i
z
e

(x
m

e
sh

)−
1

n
g

=
s
i
z
e

(x
)

N
G

N
O

D
=s
i
z
e

(s
h

a
p

e
1

D
,1

)

d
o

 is
p

e
c=

1
,n

e

d
o

 i=
1

,N

d
o

 j=
1

,N
G

N
O

D
x(

(i
sp

e
c−

1
)*

N
+

i)
 =

 x
((

is
p

e
c−

1
)*

N
+

i)
 +

 s
h

a
p

e
1

D
(j
,i)

*x
m

e
sh

(i
s

p
e

c−
1

+
j)

e
n
d
d
o

e
n
d
d
o

e
n
d
d
o

d
o

 j=
1

,N
G

N
O

D
x(

n
g

)
=

 x
(n

g
)

+
 s

h
a

p
e

1
D

(j
,N

+
1

)*
xm

e
sh

(n
e

−
1

+
j)

e
n
d
d
o

E
N
D

S
U
B
R
O
U
T
I
N
E

cr

ea
te

_x
_i

rr
eg

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

S
U
B
R
O
U
T
I
N
E

co

n
n

ec
t_

ve
c(

N
,n

e
,n

g
,e

l,G
L

,C
)

!s
u

b
ro

u
tin

e
 f

o
r

co
m

p
ili

n
g

 a
 g

lo
b

a
l v

e
ct

o
r

G
L

 (
a

d
d

in
g

 t
h

e
 c

o
m

p
o

n
e

n
ts

 e
l(
i,j

)
a

t
th

e
 c

o
rr

e
ct

 p
la

ce
s)

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 e
l(
1

:N
+

1
,1

:n
e

),
 G

L
(1

:n
g

)

i
n
t
e
g
e
r

 C
(1

:N
+

1
,1

:n
e

)
i
n
t
e
g
e
r

 N
,n

e
,n

g
i
n
t
e
g
e
r

 i,
j,k

d
o

 i=
1

,n
e

d
o

 j=
1

,N
+

1

G
L

(C
(j
,i)

)=
G

L
(C

(j
,i)

)+
e

l(
j,i

)

e
n
d
d
o

e
n
d
d
o

E
N
D

S
U
B
R
O
U
T
I
N
E

co

n
n

ec
t_

ve
c

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

S
U
B
R
O
U
T
I
N
E

co

n
n

ec
t_

m
at

(N
,n

e
,n

g
,e

l,G
L

,C
)

!s
u

b
ro

u
tin

e
 f

o
r

co
m

p
ili

n
g

 a
 g

lo
b

a
l m

a
tr

ix
 G

L
 (

a
d

d
in

g
 t

h
e

 c
o

m
p

o
n

e
n

ts
 e

l(
i,j

)
a

t
th

e
 c

o
rr

e
ct

 p
la

ce
s)

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 e
l(
1

:N
+

1
,1

:N
+

1
,1

:n
e

),
 G

L
(1

:n
g

,1
:n

g
)

i
n
t
e
g
e
r

 C
(1

:N
+

1
,1

:n
e

)
i
n
t
e
g
e
r

 N
,n

e
,n

g
i
n
t
e
g
e
r

 i,
j,k

d
o

 i=
1

,n
e

d
o

 j=
1

,N
+

1

d
o

 k
=

1
,N

+
1

G
L

(C
(k

,i)
,C

(j
,i)

)=
G

L
(C

(k
,i)

,C
(j
,i)

)+
e

l(
k,

j,i
)

e
n
d
d
o

e
n
d
d
o

e
n
d
d
o

E
N
D

S
U
B
R
O
U
T
I
N
E

co

n
n

ec
t_

m
at

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

S
U
B
R
O
U
T
I
N
E

cr

ea
te

_S
(N

,n
e

,n
g

,s
e

,S
)

i
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(0
:N

,0
:N

,1
:n

e
)

::
 s

e
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
,:

)
::

 S
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(0
:2

*N
,1

:n
e

−
1

)
::

 s
e

_
la

n
g

i
n
t
e
g
e
r

 N
,n

e
,n

g
,i,

j

d
o

 i=
1

,n
e

−
1 se

_
la

n
g

(0
:N

−
1

,i)
=

se
(N

,0
:N

−
1

,i)
se

_
la

n
g

(N
,i)

=
se

(N
,N

,i)
+

se
(0

,0
,i+

1
)

se
_

la
n

g
(N

+
1

:2
*N

,i)
=

se
(0

,1
:N

,i+
1

)
e
n
d
d
o

d
o

 i=
1

,N
S

(i
,1

:N
+

1
)=

se
(i
−

1
,:

,1
)

S
((

n
e

−
1

)*
N

+
i+

1
,N

+
1

:2
*N

+
1

)=
se

(i
,:

,n
e

)
e
n
d
d
o

S
((

n
e

−
1

)*
N

+
1

,:
)=

se
_

la
n

g
(:

,n
e

−
1

)

A.2. The Fortran 1-D SEM Program Code 149
d
o

 i=
1

,n
e

−
2 S

(i
*N

+
1

,:
)=

se
_

la
n

g
(:

,i)

d
o

 j=
2

,N
S

(i
*N

+
j,(

N
+

2
−

j)
:(

2
*N

+
2

−
j)
)=

se
(j
−

1
,:

,i+
1

)
e
n
d
d
o

e
n
d
d
o

E
N
D

S
U
B
R
O
U
T
I
N
E

cr

ea
te

_S

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

S
U
B
R
O
U
T
I
N
E

ca

lc
u

la
te

_F
(N

,n
e

,D
L

,w
e

ig
h

ts
,la

m
b

d
a

e
,U

,F
,C

,J
a

co
b

ia
n

,J
a

co
b

i
_

in
ve

rs
e

,v
e

_
sr

c,
sr

c,
sr

c_
n

e
,s

rc
_

N
,b

v1
,b

vn
g

,s
tf

p
a

r,
d

t)

i
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(1
:N

+
1

,1
:n

e
)

::
 la

m
b

d
a

e
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(1
:N

+
1

,1
:N

+
1

)
::

 D
L

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
,:

)
::

 J
a

co
b

ia
n

,
Ja

co
b

i_
in

ve
rs

e
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
)

::
 U

,
F

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(1
:N

+
1

)
::

 f
e

,
w

e
ig

h
ts

,
tm

p
x1

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 s
rc

,
ve

_
sr

c,
 s

ig
m

a
,

tm
p

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
o
p
t
i
o
n
a
l

 :
:

b
v1

,
b

vn
g

,
d

t

i
n
t
e
g
e
r

,
d
i
m
e
n
s
i
o
n

(1
:N

+
1

,1
:n

e
)

::
 C

i
n
t
e
g
e
r

 i,
j,k

,l,
 is

p
e

c,
 N

,
n

e
,

sr
c_

n
e

,
sr

c_
N

c
h
a
r
a
c
t
e
r

(
l
e
n

=
2

),

o
p
t
i
o
n
a
l

 :
:

st
fp

a
r

d
o

 is
p

e
c=

1
,n

e

fe
=

0

d
o

 i=
1

,N
+

1
tm

p
 =

 0
.

d
o

 l=
1

,N
+

1

tm
p

=
 t

m
p

 +
 U

(C
(l
,is

p
e

c)
)

*
D

L
(i
,l)

!c

a
lc

u
la

tin
g

 d
u

/d
xi

 =
 e

p
si

lo
n

 in
 1

D

e
n
d
d
o

!
ca

lc
u

la
tin

g
 t

h
e

 s
tr

e
ss

 in
 p

h
ys

ic
a

l c
o

o
rd

in
a

te
s

=
>

 m
u

lti
p

l
y

w
ith

 d
xi

/d
x

=
 J

a
co

b
i_

in
ve

rs
e

si
g

m
a

 =
 la

m
b

d
a

e
(i
,is

p
e

c)
 *

 t
m

p
 *

 J
a

co
b

i_
in

ve
rs

e
(i
,is

p
e

c)

!
Ja

co
b

ia
n

 n
e

e
d

e
d

 f
o

r
in

te
g

ra
tio

n
 a

n
d

 s
e

co
n

d
 d

xi
/d

x
n

e
e

d
e

d

fo
r

d
e

ri
va

tio
n

 o
f

!t
e

st
 f

u
n

ct
io

n
 in

 p
h

ys
ic

a
l c

o
o

rd
in

a
te

s
tm

p
x1

(i
)

=
 J

a
co

b
ia

n
(i
,is

p
e

c)
 *

 s
ig

m
a

 *
 J

a
co

b
i_

in
ve

rs
e

(i
,is

p
e

c)

e
n
d
d
o

d
o

 i
=

 1
,N

+
1

tm
p

 =
 0

.

d
o

 l=
1

,N
+

1

 t

m
p

 =
 t

m
p

 +
 t

m
p

x1
(l
)

*
D

L
(l
,i)

 *
 w

e
ig

h
ts

(l
)

e
n
d
d
o

fe
(i
)

=
 −

 t
m

p

i
f

 (
p
r
e
s
e
n
t

(b
v1

)
∧

p
r
e
s
e
n
t

(b
vn

g
))

t
h
e
n

i
f

 (
i =

=
 1

∧

is
p

e
c

=
=

 1
)

fe
(i
)=

fe
(i
)−

b
v1

i
f

 (
i =

=
 (

N
+

1
)

∧
is

p
e

c
=

=
 n

e
)

fe
(i
)=

fe
(i
)−

b
vn

g
e
n
d
i
f

i
f

 (
is

p
e

c
=

=
 s

rc
_

n
e

∧

i =
=

 s
rc

_
N

)
t
h
e
n

i
f

 (
(
p
r
e
s
e
n
t

(s
tf

p
a

r)

∨
p
r
e
s
e
n
t

(d
t)

)
=

=
 .

fa
ls

e
.

∨
st

fp
a

r
=

=
 ’

de
’)

t
h
e
n

 f

e
(i
)

=
 f

e
(i
)

+
 2

.
*

sr
c

*
ve

_
sr

c

e
l
s
e

 f

e
(i
)

=
 f

e
(i
)

+
 2

.
*

sr
c

*
ve

_
sr

c
/

d
t

e
n
d
i
f

e
n
d
i
f

e
n
d
d
o

d
o

 i
=

 1
,N

+
1

F
(C

(i
,is

p
e

c)
)=

F
(C

(i
,is

p
e

c)
)+

fe
(i
)

e
n
d
d
o

e
n
d
d
o

E
N
D

S
U
B
R
O
U
T
I
N
E

ca

lc
u

la
te

_F

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

S
U
B
R
O
U
T
I
N
E

g

et
_f

u
n

c_
at

_p
o

s(
N

,n
u

m
_

e
l,f

u
n

c,
o

u
tv

a
l,x

,x
ig

ll,
C

,x
_

a
n

ch
o

r)

u
s
e

la

gr
an

ge
_p

ol
y

i
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
),

i
n
t
e
n
t

(
in

)
::

 f
u

n
c,

x_
a

n
ch

o
r

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
i
n
t
e
n
t

(
in

)
::

 x
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(1
:N

+
1

)
::

 l,
d

l,x
ig

ll
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 o
u

tv
a

l,
xi

_
lo

ca
l

i
n
t
e
g
e
r

,
d
i
m
e
n
s
i
o
n

(:
,:

),
i
n
t
e
n
t

(
in

)
::

 C
i
n
t
e
g
e
r

 i,
j,k

,
N

,n
u

m
_

e
l

xi
_

lo
ca

l =
 0

.
o

u
tv

a
l =

 0
.

xi
_

lo
ca

l =
 −

1
.

+
 (

x
−

 x
_

a
n

ch
o

r(
n

u
m

_
e

l)
)/

(x
_

a
n

ch
o

r(
n

u
m

_
e

l+
1

)
−

 x
_

a
n

c
h

o
r(

n
u

m
_

e
l)
)*

2
.

c
a
l
l

la

gr
an

ge
_a

ny
(x

i_
lo

ca
l,N

+
1

,x
ig

ll,
l,d

l)

d
o

 i=
1

,N
+

1 o
u

tv
a

l =
 o

u
tv

a
l +

 f
u

n
c(

C
(i
,n

u
m

_
e

l)
)

*
l(
i)

e
n
d
d
o

E
N
D

S
U
B
R
O
U
T
I
N
E

g

et
_f

u
n

c_
at

_p
o

s

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

!=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

! !

 S

 p
 e

 c
 f

 e
 m

 3
 D

G

 l
o

 b
 e

V

 e
 r

 s
 i

o
 n

3

 .
 3

!

 −

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
! !

D
im

itr
i K

o
m

a
tit

sc
h

 a
n

d
 J

e
ro

e
n

 T
ro

m
p

!

 S
e

is
m

o
lo

g
ic

a
l L

a
b

o
ra

to
ry

 −
 C

a
lif

o
rn

ia
 I

n
st

itu
te

 o
f

T
e

ch
n

o
lo

g
y

!

 (
c)

 C
a

lif
o

rn
ia

 I
n

st
itu

te
 o

f
T

e
ch

n
o

lo
g

y
S

e
p

te
m

b
e

r
2

0
0

2
! !

A

 s
ig

n
e

d
 n

o
n

−
co

m
m

e
rc

ia
l a

g
re

e
m

e
n

t
is

 r
e

q
u

ir
e

d
 t

o
 u

se
 t

h
is

 p
ro

g
r

a
m

.
!

 P
le

a
se

 c
h

e
ck

 h
tt

p
:/

/w
w

w
.g

p
s.

ca
lte

ch
.e

d
u

/r
e

se
a

rc
h

/jt
ro

m
p

 f
o

r
d

e
ta

ils
.

!

F
re

e
 f

o
r

n
o

n
−

co
m

m
e

rc
ia

l a
ca

d
e

m
ic

 r
e

se
a

rc
h

 O
N

L
Y

.
!

 T
h

is
 p

ro
g

ra
m

 is
 d

is
tr

ib
u

te
d

 W
IT

H
O

U
T

 A
N

Y
 W

A
R

R
A

N
T

Y
 w

h
a

ts
o

e
ve

r.
!

 D
o

 n
o

t
re

d
is

tr
ib

u
te

 t
h

is
 p

ro
g

ra
m

 w
ith

o
u

t
w

ri
tt

e
n

 p
e

rm
is

si
o

n
.

! !=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

M
O
D
U
L
E

la

g
ra

n
g

e

E
N
D

 M
O

D
U

L
E

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

s
u
b
r
o
u
t
i
n
e

la

g
ra

n
g

e_
an

y(
xi

,N
G

L
L

,x
ig

ll,
h

,h
p

ri
m

e
)

!
su

b
ro

u
tin

e
 t

o
 c

o
m

p
u

te
 t

h
e

 L
a

g
ra

n
g

e
 in

te
rp

o
la

n
ts

 b
a

se
d

 u
p

o
n

 t
h

e
 G

L
L

 p
o

in
ts

!
a

n
d

 t
h

e
ir
 f

ir
st

 d
e

ri
va

tiv
e

s
a

t
a

n
y

p
o

in
t

xi
 in

 [
−

1
,1

]

i
m
p
l
i
c
i
t

n
o
n
e

i
n
t
e
g
e
r

 N
G

L
L

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 x
i,x

ig
ll(

N
G

L
L

),
h

(N
G

L
L

),
h

p
ri
m

e
(N

G
L

L
)

i
n
t
e
g
e
r

 d
g

r,
i,j

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 p
ro

d
1

,p
ro

d
2

d
o

 d
g

r=
1

,N
G

L
L

p

ro
d

1
 =

 1
.0

d
0

p

ro
d

2
 =

 1
.0

d
0

d
o

 i=
1

,N
G

L
L

i
f

(i

≠
d

g
r)

t
h
e
n

p

ro
d

1
 =

 p
ro

d
1

*(
xi

−
xi

g
ll(

i)
)

p

ro
d

2
 =

 p
ro

d
2

*(
xi

g
ll(

d
g

r)
−

xi
g

ll(
i)
)

e
n
d
i
f

e
n
d
d
o

h

(d
g

r)
=

p
ro

d
1

/p
ro

d
2

h

p
ri
m

e
(d

g
r)

=
0

.0
d

0

d
o

 i=
1

,N
G

L
L

i
f

(i

≠
d

g
r)

t
h
e
n

p

ro
d

1
=

1
.0

d
0

d
o

 j=
1

,N
G

L
L

i
f

(j

≠
d

g
r

∧
j

≠
i)
 p

ro
d

1
 =

 p
ro

d
1

*(
xi

−
xi

g
ll(

j)
)

e
n
d
d
o

h

p
ri
m

e
(d

g
r)

 =
 h

p
ri
m

e
(d

g
r)

+
p

ro
d

1

e
n
d
i
f

e
n
d
d
o

h

p
ri
m

e
(d

g
r)

 =
 h

p
ri
m

e
(d

g
r)

/p
ro

d
2

e
n
d
d
o

e
n
d

s
u
b
r
o
u
t
i
n
e

la

g
ra

n
g

e_
an

y

! !=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
! !

su
b

ro
u

tin
e

 t
o

 c
o

m
p

u
te

 t
h

e
 d

e
ri
va

tiv
e

 o
f

th
e

 L
a

g
ra

n
g

e
 in

te
rp

o
la

n
ts

!
a

t
th

e
 G

L
L

 p
o

in
ts

 a
t

a
n

y
g

iv
e

n
 G

L
L

 p
o

in
t

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

f
u
n
c
t
i
o
n

la

g
ra

n
g

e_
d

er
iv

_G
L

L
(I

,j,
Z

G
L

L
,N

Z
)

!−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

! !

C

o
m

p
u

te
 t

h
e

 v
a

lu
e

 o
f

th
e

 d
e

ri
va

tiv
e

 o
f

th
e

 I
−

th
!

L
a

g
ra

n
g

e
 in

te
rp

o
la

n
t

th
ro

u
g

h
 t

h
e

!

N

Z
 G

a
u

ss
−

L
o

b
a

tt
o

 L
e

g
e

n
d

re
 p

o
in

ts
 Z

G
L

L
 a

t
p

o
in

t
Z

G
L

L
(j
)

! !−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

i
m
p
l
i
c
i
t

n
o
n
e

i
n
t
e
g
e
r

 i,
j,n

z

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 z
g

ll(
0

:n
z−

1
)

i
n
t
e
g
e
r

 d
e

g
p

o
ly

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
e
x
t
e
r
n
a
l

 :
:

p
n

le
g

,p
n

d
le

g

d

e
g

p
o

ly
 =

 n
z

−
 1

i
f

 (
i =

=
 0

∧

j =
=

 0
)

t
h
e
n

la
g

ra
n

g
e

_
d

e
ri
v_

G
L

L
 =

 −

d
b
l
e

(d
e

g
p

o
ly

)*
(

d
b
l
e

(d
e

g
p

o
ly

)+
1

.d
0

)
/

4
.d

0
e
l
s
e

i
f

 (
i =

=
 d

e
g

p
o

ly

∧
j =

=
 d

e
g

p
o

ly
)

t
h
e
n

la
g

ra
n

g
e

_
d

e
ri
v_

G
L

L
 =

d
b
l
e

(d
e

g
p

o
ly

)*
(

d
b
l
e

(d
e

g
p

o
ly

)+
1

.d
0

)
/

4
.d

0

e
l
s
e

i
f

 (
i =

=
 j)

t
h
e
n

la
g

ra
n

g
e

_
d

e
ri
v_

G
L

L
 =

 0
.d

0

e
l
s
e

la
g

ra
n

g
e

_
d

e
ri
v_

G
L

L
 =

 p
n

le
g

(z
g

ll(
j)
,d

e
g

p
o

ly
)

/
&

(p

n
le

g
(z

g
ll(

i)
,d

e
g

p
o

ly
)*

(z
g

ll(
j)
−

zg
ll(

i)
))

 &

+
 (

1
.d

0
−

zg
ll(

j)
*z

g
ll(

j)
)*

p
n

d
le

g
(z

g
ll(

j)
,d

e
g

p
o

ly
)

/
(

d
b
l
e

(d
e

g
p

o
ly

)*
 &

(

d
b
l
e

(d
e

g
p

o
ly

)+
1

.d
0

)*
p

n
le

g
(z

g
ll(

i)
,d

e
g

p
o

ly
)*

(z
g

ll(
j)
−

zg
ll(

i)
)

*(
zg

ll(
j)
−

zg
ll(

i)
))

e
n
d
i
f

e
n
d

f
u
n
c
t
i
o
n

la

g
ra

n
g

e_
d

er
iv

_G
L

L

150 Appendix A

M
O
D
U
L
E

ja

co
b

ia
n

_m
o

d

I
N
T
E
R
F
A
C
E

S
U
B
R
O
U
T
I
N
E

ca

lc
_j

ac
o

b
ia

n
1D

(J
a

co
b

i,J
a

co
b

ia
n

,J
a

co
b

i_
in

ve
rs

e
,s

h
a

p
e

1
D

,
d

e
rs

h
a

p
e

1
D

,x
m

e
sh

)

i
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
,:

)
::

 J
a

co
b

i,
Ja

co
b

ia
n

,
Ja

co
b

i_
in

ve
rs

e
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
,:

)
::

 s
h

a
p

e
1

D
,d

e
rs

h
a

p
e

1
D

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
)

::
 x

m
e

sh
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 x
e

lm

i
n
t
e
g
e
r

 is
p

e
c,

 i,
j,k

,
N

G
L

L
X

,
N

G
N

O
D

,
n

e

E
N
D

 S
U

B
R

O
U

T
IN

E
E
N
D

I
N
T
E
R
F
A
C
E

E
N
D

 M
O

D
U

L
E

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

S
U
B
R
O
U
T
I
N
E

ca

lc
_j

ac
o

b
ia

n
1D

(J
a

co
b

i,J
a

co
b

ia
n

,J
a

co
b

i_
in

ve
rs

e
,s

h
a

p
e

1
D

,d
e

rs
h

a
p

e
1

D
,x

m
e

sh
)

!s
u

b
ro

u
tin

e
 c

a
lc

u
la

te
s

th
e

 J
a

co
b

i−
M

a
tr

ix
,

th
e

 J
a

co
b

ia
n

 o
f

th
e

!M

a
p

p
in

g
 F

u
n

ct
io

n
 a

n
d

 t
h

e
 J

a
co

b
i−

M
a

tr
ix

 o
f

th
e

 in
ve

rs
e

 M
a

p
p

in
g

!F

u
n

ct
io

n
 f

o
r

a
 1

−
D

 S
E

M

(m
a

in
 p

ro
g

ra
m

:
e

la
st

ic
_

1
D

)

i
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
,:

)
::

 J
a

co
b

i

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
,:

)
::

 J
a

co
b

ia
n

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
,:

)
::

 J
a

co
b

i_
in

ve
rs

e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
,:

)
::

 s
h

a
p

e
1

D

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
,:

)
::

 d
e

rs
h

a
p

e
1

D

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(:
)

::
 x

m
e

sh

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 x
e

lm

i
n
t
e
g
e
r

 is
p

e
c,

 i,
j,k

,
N

G
L

L
X

,
N

G
N

O
D

,
n

e

N
G

N
O

D
=s
i
z
e

(s
h

a
p

e
1

D
,1

)
N

G
L

L
X

=s
i
z
e

(s
h

a
p

e
1

D
,2

)

n
e

 =

s
i
z
e

(J
a

co
b

i,2
)

d
o

 is
p

e
c=

1
,n

e

d
o

 i=
1

,N
G

L
L

X

d
o

 j=
1

,N
G

N
O

D
xe

lm
 =

 x
m

e
sh

(i
sp

e
c−

1
+

j)
Ja

co
b

i(
i,i

sp
e

c)
 =

 J
a

co
b

i(
i,i

sp
e

c)
 +

 d
e

rs
h

a
p

e
1

D
(j
,i)

*x
e

lm
Ja

co
b

ia
n

(i
,is

p
e

c)
 =

 J
a

co
b

i(
i,i

sp
e

c)
Ja

co
b

i_
in

ve
rs

e
 =

 1
./

Ja
co

b
ia

n

e
n
d
d
o

e
n
d
d
o

e
n
d
d
o

E
N
D

 S
U

B
R

O
U

T
IN

E

M
O
D
U
L
E

sh

ap
e_

m
o

d

!
C

h
a

n
g

e
d

 t
o

 1
D

 b
y

B
e

rn
h

a
rd

 S
ch

u
b

e
rt

h
 0

2
.0

6
.2

0
0

3
 f

o
r

se
ri
a

l a
p

p
lic

a
tio

n
s

!=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
! !

 S
 p

 e
 c

 f
 e

 m
 3

 D

G
 l

o
 b

 e

V
 e

 r
 s

 i
o

 n

3
 .

 3
!

 −
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

! !

D

im
itr

i K
o

m
a

tit
sc

h
 a

n
d

 J
e

ro
e

n
 T

ro
m

p
!

 S

e
is

m
o

lo
g

ic
a

l L
a

b
o

ra
to

ry
 −

 C
a

lif
o

rn
ia

 I
n

st
itu

te
 o

f
T

e
ch

n
o

lo
g

y
!

 (

c)
 C

a
lif

o
rn

ia
 I

n
st

itu
te

 o
f

T
e

ch
n

o
lo

g
y

S
e

p
te

m
b

e
r

2
0

0
2

! !

 A
 s

ig
n

e
d

 n
o

n
−

co
m

m
e

rc
ia

l a
g

re
e

m
e

n
t

is
 r

e
q

u
ir
e

d
 t

o
 u

se
 t

h
is

 p
ro

g
ra

m
.

!

P
le

a
se

 c
h

e
ck

 h
tt

p
:/

/w
w

w
.g

p
s.

ca
lte

ch
.e

d
u

/r
e

se
a

rc
h

/jt
ro

m
p

 f
o

r
d

e
t

a
ils

.
!

F

re
e

 f
o

r
n

o
n

−
co

m
m

e
rc

ia
l a

ca
d

e
m

ic
 r

e
se

a
rc

h
 O

N
L

Y
.

!

 T

h
is

 p
ro

g
ra

m
 is

 d
is

tr
ib

u
te

d
 W

IT
H

O
U

T
 A

N
Y

 W
A

R
R

A
N

T
Y

 w
h

a
ts

o
e

ve
r.

!

 D

o
 n

o
t

re
d

is
tr

ib
u

te
 t

h
is

 p
ro

g
ra

m
 w

ith
o

u
t

w
ri
tt

e
n

 p
e

rm
is

si
o

n
.

! !=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=

I
N
T
E
R
F
A
C
E

S
U
B
R
O
U
T
I
N
E

g

et
_s

h
ap

e1
D

(s
h

a
p

e
1

D
,d

e
rs

h
a

p
e

1
D

,x
ig

ll)

i
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 x
ig

ll(
:)

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 s
h

a
p

e
1

D
(:

,:
)

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 d
e

rs
h

a
p

e
1

D
(:

,:
)

i
n
t
e
g
e
r

 i,
j,k

,ia
,

N
G

L
L

X
,

N
G

N
O

D

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 x
i

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 l1
xi

,l2
xi

,l3
xi

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 l1
p

xi
,l2

p
xi

,l3
p

xi

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 s
u

m
sh

a
p

e
,s

u
m

d
e

rs
h

a
p

e
xi

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
p
a
r
a
m
e
t
e
r

 :
:

T
IN

Y
V

A
L

=
1

e
−

9

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
p
a
r
a
m
e
t
e
r

 :
:

O
N

E
 =

 1
.

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
p
a
r
a
m
e
t
e
r

 :
:

H
A

L
F

 =
 1

./
2

.

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
p
a
r
a
m
e
t
e
r

 :
:

Z
E

R
O

 =
 0

.

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
p
a
r
a
m
e
t
e
r

 :
:

T
W

O
 =

 2
.

E
N
D

 S
U

B
R

O
U

T
IN

E
E
N
D

I
N
T
E
R
F
A
C
E

E
N
D

 M
O

D
U

L
E

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

s
u
b
r
o
u
t
i
n
e

g

et
_s

h
ap

e1
D

(s
h

a
p

e
1

D
,d

e
rs

h
a

p
e

1
D

,x
ig

ll)

i
m
p
l
i
c
i
t

n
o
n
e

!
G

a
u

ss
−

L
o

b
a

tt
o

−
L

e
g

e
n

d
re

 p
o

in
ts

 o
f

in
te

g
ra

tio
n

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 x
ig

ll(
:)

!
1

D
 s

h
a

p
e

 f
u

n
ct

io
n

s
a

n
d

 t
h

e
ir
 d

e
ri
va

tiv
e

s

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 s
h

a
p

e
1

D
(:

,:
)

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 d
e

rs
h

a
p

e
1

D
(:

,:
)

i
n
t
e
g
e
r

 i,
j,k

,ia
,

N
G

L
L

X
,

N
G

N
O

D

!
lo

ca
tio

n
 o

f
th

e
 n

o
d

e
s

o
f

th
e

 1
D

 q
u

a
d

ri
la

te
ra

l e
le

m
e

n
ts

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 x
i

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 l1
xi

,l2
xi

,l3
xi

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 l1
p

xi
,l2

p
xi

,l3
p

xi

!
fo

r
ch

e
ck

in
g

 t
h

e
 1

D
 s

h
a

p
e

 f
u

n
ct

io
n

s

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

 s
u

m
sh

a
p

e
,s

u
m

d
e

rs
h

a
p

e
xi

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
p
a
r
a
m
e
t
e
r

 :
:

T
IN

Y
V

A
L

=
1

e
−

9

!
d

e
fin

in
g

 1
,

1
/2

 a
n

d
 0

 a
n

d
 2

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
p
a
r
a
m
e
t
e
r

 :
:

O
N

E
 =

 1
.

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
p
a
r
a
m
e
t
e
r

 :
:

H
A

L
F

 =
 1

./
2

.

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
p
a
r
a
m
e
t
e
r

 :
:

Z
E

R
O

 =
 0

.

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
p
a
r
a
m
e
t
e
r

 :
:

T
W

O
 =

 2
.

N
G

N
O

D
 =

 s
i
z
e

(s
h

a
p

e
1

D
,1

)
N

G
L

L
X

 =

s
i
z
e

(s
h

a
p

e
1

D
,2

)

i
f

 (
N

G
N

O
D

 =
=

 2
)

t
h
e
n

!
g

e
n

e
ra

te
 t

h
e

 1
D

 s
h

a
p

e
 f

u
n

ct
io

n
s

a
n

d
 t

h
e

ir
 d

e
ri
va

tiv
e

s
(2

 n
o

d
e

s)

d
o

 i=
1

,N
G

L
L

X

xi

=
xi

g
ll(

i)

l1

xi
=

(O
N

E
 −

 x
i)
 *

 H
A

L
F

l2

xi
=

(O
N

E
 +

 x
i)
 *

 H
A

L
F

l1

p
xi

=
−

H
A

L
F

l2

p
xi

=
H

A
L

F

!

co

rn
e

r
n

o
d

e
s

sh

a
p

e
1

D
(1

,i)
=

l1
xi

sh

a
p

e
1

D
(2

,i)
=

l2
xi

d

e
rs

h
a

p
e

1
D

(1
,i)

=
l1

p
xi

d

e
rs

h
a

p
e

1
D

(2
,i)

=
l2

p
xi

e
n
d
d
o

e
l
s
e
i
f

 (
N

G
N

O
D

 =
=

 3
)

t
h
e
n

!
g

e
n

e
ra

te
 t

h
e

 1
D

 s
h

a
p

e
 f

u
n

ct
io

n
s

a
n

d
 t

h
e

ir
 d

e
ri
va

tiv
e

s
(3

 n
o

d
e

s)

d
o

 i=
1

,N
G

L
L

X

xi

=
xi

g
ll(

i)

l1

xi
=

H
A

L
F

*x
i*

(x
i−

O
N

E
)

l2

xi
=

O
N

E
−

xi
**

2

l3
xi

=
H

A
L

F
*x

i*
(x

i+
O

N
E

)

l1

p
xi

=
xi

−
H

A
L

F

l2
p

xi
=

−
T

W
O

*x
i

l3

p
xi

=
xi

+
H

A
L

F

!

co

rn
e

r
n

o
d

e
s

sh

a
p

e
1

D
(1

,i)
=

l1
xi

sh

a
p

e
1

D
(2

,i)
=

l2
xi

sh

a
p

e
1

D
(3

,i)
=

l3
xi

d

e
rs

h
a

p
e

1
D

(1
,i)

=
l1

p
xi

d

e
rs

h
a

p
e

1
D

(2
,i)

=
l2

p
xi

d

e
rs

h
a

p
e

1
D

(3
,i)

=
l3

p
xi

e
n
d
d
o

e
n
d
i
f

!
ch

e
ck

 t
h

e
 s

h
a

p
e

 f
u

n
ct

io
n

s

d
o

 i=
1

,N
G

L
L

X

su

m
sh

a
p

e
=

Z
E

R
O

su

m
d

e
rs

h
a

p
e

xi
=

Z
E

R
O

d
o

 ia
=

1
,N

G
N

O
D

su
m

sh
a

p
e

=
su

m
sh

a
p

e
+

sh
a

p
e

1
D

(i
a

,i)

su
m

d
e

rs
h

a
p

e
xi

=
su

m
d

e
rs

h
a

p
e

xi
+

d
e

rs
h

a
p

e
1

D
(i
a

,i)

e
n
d
d
o

!

th

e
 s

u
m

 o
f

th
e

 s
h

a
p

e
 f

u
n

ct
io

n
s

sh
o

u
ld

 b
e

 1

i
f

(
a
b
s

(s
u

m
sh

a
p

e
−

O
N

E
)

>
 T

IN
Y

V
A

L
)

p
r
i
n
t

 *
,

’
er

ro
r

in
 1

D
 s

ha
pe

 f
un

ct
io

ns
’ !

th
e

 s
u

m
 o

f
th

e
 d

e
ri
va

tiv
e

s
o

f
th

e
 s

h
a

p
e

 f
u

n
ct

io
n

s
sh

o
u

ld
 b

e
 0

i
f

(
a
b
s

(s
u

m
d

e
rs

h
a

p
e

xi
)

>
 T

IN
Y

V
A

L
)

&

p
r
i
n
t

 *
,

’
er

ro
r

in
 x

i d
er

iv
at

iv
es

 o
f

1D
 s

ha
pe

 f
un

ct
io

n’

e
n
d
d
o

e
n
d

s
u
b
r
o
u
t
i
n
e

g

et
_s

h
ap

e1
D

A.2. The Fortran 1-D SEM Program Code 151
S
U
B
R
O
U
T
I
N
E

m

u
lt

ip
ly

_S
_U

(n
n

,n
n

g
,s

tif
f,

U
_

in
t,

st
iff

m
U

)

!c
a

lc
u

la
te

s
th

e
 m

a
tr

ix
−

ve
ct

o
r

p
ro

d
u

ct
 o

f
th

e
 c

o
n

d
e

n
se

d
 s

tif
fn

e
ss

 m
a

tr
ix

 s
tif

f,
 c

re
a

te
d

 b
y

!c
re

a
te

_
S

,
w

ith
 t

h
e

 d
is

p
la

ce
m

e
n

t
ve

ct
o

r
U

_
in

t

i
m
p
l
i
c
i
t

n
o
n
e

d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(1
:n

n
g

,0
:2

*n
n

)
::

 s
tif

f
d
o
u
b
l
e

p
r
e
c
i
s
i
o
n

,
d
i
m
e
n
s
i
o
n

(1
:n

n
g

)
::

 U
_

in
t,

st
iff

m
U

i
n
t
e
g
e
r

 j,
k,

n
n

,n
n

g

 s

tif
fm

U
 =

 0

d
o

 j=
1

,n
n

d
o

 k
=

0
,2

*n
n

 s
tif

fm
U

(j
)

=
 s

tif
fm

U
(j
)

+
 s

tif
f(

j,k
)

*
U

_
in

t(
k+

1
)

e
n
d
d
o

e
n
d
d
o

d
o

 j=
n

n
+

1
,n

n
g

−
n

n

d
o

 k
=

−
n

n
,n

n

 s

tif
fm

U
(j
)

=
 s

tif
fm

U
(j
)

+
 s

tif
f(

j,k
+

n
n

)
*

U
_

in
t(

j+
k)

e
n
d
d
o

e
n
d
d
o

d
o

 j=
n

n
g

−
n

n
+

1
,n

n
g

d
o

 k
=

0
,2

*n
n

 s
tif

fm
U

(j
)

=
 s

tif
fm

U
(j
)

+
 s

tif
f(

j,k
)

*
U

_
in

t(
n

n
g

−
2

*n
n

+
k)

e
n
d
d
o

e
n
d
d
o

E
N
D

S
U
B
R
O
U
T
I
N
E

m

u
lt

ip
ly

_S
_U

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

!E
xc

e
rp

t
o

f
th

e
 1

−
D

 w
a

ve
 p

ro
p

a
g

a
tio

n
 c

o
d

e
 w

ith
 N

e
w

m
a

rk
−

ty
p

e

!in
te

g
ra

tio
n

 s
ch

e
m

e
,

u
si

n
g

 a
n

 a
cc

e
le

ra
tio

n
 f

o
rm

u
la

tio
n

 a
n

d
 n

o

!a
d

d
iti

o
n

a
l i

te
ra

tio
n

s.
!_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

!t
im

e
 lo

o
p

d
o

i
=
1
,
n
t

!
u

p
d

a
te

 d
is

p
la

ce
m

e
n

t
u

si
n

g
 f

in
ite

 d
iff

e
re

n
ce

 t
im

e
 s

ch
e

m
e

d
o

j
=
1
,
n
g

U
(
j
)

=

U
(
j
)

+

d
t
*
V
e
l
o
c
(
j
)

+

(
d
t
*
*
2
)
/
2
.

*

A
c
c
e
l
(
j
)

V
e
l
o
c
(
j
)

=

V
e
l
o
c
(
j
)

+

d
t
/
2
.

*

A
c
c
e
l
(
j
)

A
c
c
e
l
(
j
)

=

0
.

e
n
d
d
o

!c
o

m
p

u
te

 t
h

e
 f

o
rc

e
 a

t
e

ve
ry

 g
ri
d

 p
o

in
t

o
f

th
e

 m
e

sh
 f

o
r

!t
im

e
st

e
p

 i

c
a
l
l

ca
lc

ul
at

e_
F
(
N
,
n
e
,
D
L
,
w
e
i
g
h
t
s
,
m
u
e
_
e
,
U
,
A
c
c
e
l
,
C
,
J
a
c
o
b
i
a
n
,
&

J
a
c
o
b
i
_
i
n
v
e
r
s
e
,
v
e
(
s
r
c
_
N
,
s
r
c
_
n
e
)
,
s
r
c
(
i
)
,
&

s
r
c
_
n
e
,
s
r
c
_
N
,
s
t
f
p
a
r
=
s
t
f
p
a
r
,
d
t
=
d
t
)

!c
h

e
ck

in
g

 f
o

r
b

o
u

n
d

a
ry

 c
o

n
d

iti
o

n
s

d
o

j
=
1
,
n
g

A
c
c
e
l
(
j
)

=

A
c
c
e
l
(
j
)

*

M
a
s
s
I
n
v
(
j
)

/

2
.

V
e
l
o
c
(
j
)

=

V
e
l
o
c
(
j
)

+

d
t
/
2
.

*

A
c
c
e
l
(
j
)

U
(
j
)

=

U
(
j
)

+

d
t
*
V
e
l
o
c
(
j
)

+

(
d
t
*
*
2
)
/
2
.

*

A
c
c
e
l
(
j
)

e
n
d
d
o

e
n
d
d
o

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

!E
xc

e
rp

t
o

f
th

e
 1

−
D

 w
a

ve
 p

ro
p

a
g

a
tio

n
 c

o
d

e
 w

ith
 N

e
w

m
a

rk
−

ty
p

e

!p
re

d
ic

to
r−

co
rr

e
ct

o
r

in
te

g
ra

tio
n

 s
ch

e
m

e
,

u
si

n
g

 a
n

 a
cc

e
le

ra
tio

n
!f

o
rm

u
la

tio
n

 a
n

d
 o

n
e

 it
e

ra
tio

n
.

!_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

V
p
r
e
d

=

0
.

d
e
l
t
a
t

=

d
t

d
e
l
t
a
t
o
v
e
r
2

=

0
.
5
d
0
*
d
t

d
e
l
t
a
t
s
q
o
v
e
r
2

=

0
.
5
d
0
*
d
t
*
d
t

!t
im

e
 lo

o
p

d
o

i
=
1
,
n
t

!
co

m
p

u
te

 p
re

d
ic

to
rs

d
o

j
=
1
,
n
g

U
(
j
)

=

U
(
j
)

+

d
e
l
t
a
t
*
V
e
l
o
c
(
j
)

+

d
e
l
t
a
t
s
q
o
v
e
r
2
*
A
c
c
e
l
(
j
)

V
p
r
e
d
(
j
)

=

V
e
l
o
c
(
j
)

+

d
e
l
t
a
t
o
v
e
r
2
*
A
c
c
e
l
(
j
)

V
e
l
o
c
(
j
)

=

V
p
r
e
d
(
j
)

A
c
c
e
l
(
j
)

=
0
.

e
n
d
d
o

d
o

i
t
e
r

=

1
,
2

!N
IT

E
R

!
co

m
p

u
te

 in
te

rn
a

l f
o

rc
e

s

c
a
l
l

ca
lc

ul
at

e_
F
(
N
,
n
e
,
D
L
,
w
e
i
g
h
t
s
,
m
u
e
_
e
,
U
,
A
c
c
e
l
,
C
,
J
a
c
o
b
i
a
n
,
&

J
a
c
o
b
i
_
i
n
v
e
r
s
e
,
v
e
(
s
r
c
_
N
,
s
r
c
_
n
e
)
,
s
r
c
(
i
)
,
&

s
r
c
_
n
e
,
s
r
c
_
N
,
s
t
f
p
a
r
=
s
t
f
p
a
r
,
d
t
=
d
t
)

d
o

j
=
1
,
n
g

i
f
(
i
t
e
r

=
=

1
)

t
h
e
n

A
c
c
e
l
(
j
)

=

A
c
c
e
l
(
j
)
*
M
a
s
s
I
n
v
(
j
)

e
n
d
i
f

V
e
l
o
c
(
j
)

=

V
p
r
e
d
(
j
)

+

d
e
l
t
a
t
o
v
e
r
2
*
A
c
c
e
l
(
j
)

e
n
d
d
o

e
n
d
d
o

e
n
d
d
o

List of Figures

2.1 Simple domain decomposition for the 1-D case 16
2.2 One-dimensional shape functions on two anchor nodes. 17
2.3 One-dimensional shape functions on three anchor nodes. 18
2.4 Lagrange polynomial `6 of order N = 8. The collocation points

can be clearly distinguished as the points where the function takes
the values 0 and 1. 21

2.5 All six Lagrange polynomials of order N = 5. 22
2.6 Chebychev Polynomials up to degree N = 8 31
2.7 Lagrangian interpolators of order N = 5 based on Chebychev poly-

nomials compared to Lagrange polynomials 34
2.8 x-vector with non equidistant GLL collocation points 38

3.1 Two dimensional mesh of curved structures using size doubling in
the middle layer. 52

3.2 A “cubed sphere” mesh of the globe 52
3.3 Illustration of a three-dimensional meshing of a cube 52
3.4 Meshing of geological structures in three-dimensional models based

on hexaedra . 53
3.5 Approximation of curved topography by hexaedrons 53
3.6 Mapping of 2-D elements on the reference square Ω2 = [−1, 1] ⊗

[−1, 1]. Left: straight element with four anchor nodes. Right:
curved element with nine anchor nodes. 55

3.7 Mapping of a 2-D elements from the reference square. The element
is shown with the Gauss-Lobatto-Legendre collocation points of
integration for the order N = 8 56

3.8 Mapping of 3-D elements on the reference cube Ω3 = [−1, 1] ⊗
[−1, 1] ⊗ [−1, 1]. Left: 8 node element with straight edges and
faces. Right: 27 node element with curved edges and faces. . . . 57

3.9 Shape functions of two-dimensional curved elements based on 9
anchor nodes. 58

3.10 Illustration of the connection of 2-D elements at four of their edges.
The node in the middle, displayed as a white square, is shared by
all four of them. 68

153

154 List of Figures

4.1 . 74
4.2 . 76
4.3 Snapshots of 1-D SEM simulations with different boundary condi-

tions . 77
4.4 Examples of results: relative solution error ε and ppw 82
4.5 Benchmark of CPU time per time step 83
4.6 ACF - DF: Difference in accuracy of SEM (N=5) acceleration and

displacement formulation . 86
4.7 ACF - DF: Relative CPU cost of SEM (N=5) acceleration and

displacement formulation . 86
4.8 ACF - PCF: Difference in accuracy of SEM (N=5) acceleration

and predictor-corrector formulation 87
4.9 ACF - PCF: Relative CPU cost of SEM (N=5) acceleration and

predictor-corrector formulation 87
4.10 DF - PCF: Difference in accuracy of SEM (N=5) displacement and

predictor-corrector formulation 88
4.11 DF - PCF: Relative CPU cost of SEM (N=5) displacement and

predictor-corrector formulation 88
4.12 Comparison of SEM of order N = 4 and N = 5 89
4.13 Comparison of SEM of order N = 5 and N = 8 90
4.14 Filtered seismograms of station 100 for OPO and SEM for homo-

geneous models (5 ppw) . 91
4.15 Filtered seismograms of station 100 for OPO and SEM for homo-

geneous models (10 ppw) . 91
4.16 Relative solution error ε of SEM and OPO for homogeneous models 92
4.17 Minimum points per wavelength needed by SEM and OPO for

homogeneous models . 93
4.18 Overall CPU cost of the SEM (a) and the OPO (b) for homoge-

neous models . 94
4.19 Difference in accuracy of SEM ACF N = 5 and OPO for homoge-

neous models . 95
4.20 Relative CPU cost of SEM ACF N = 5 and OPO for homogeneous

models . 95
4.21 Difference in accuracy of SEM ACF N = 8 and OPO for homoge-

neous models . 96
4.22 Relative CPU cost of SEM ACF N = 8 and OPO for homogeneous

models . 96
4.23 Relative CPU cost of SEM ACF N = 8 and OPO using the same

time step for homogeneous models 97
4.24 Difference in accuracy of SEM ACF N = 5 and OPO for hetero-

geneous models . 98
4.25 Relative CPU cost of SEM ACF N = 5 and OPO for heterogeneous

models . 98

List of Figures 155

4.26 Difference in accuracy of SEM ACF N = 8 and OPO for hetero-
geneous models . 99

4.27 Relative CPU cost of SEM ACF N = 8 and OPO using the same
time step for heterogeneous models 99

5.1 Model setup for 3-D simulations 102
5.2 Quasi-analytical solution - Explosion at z = −200 km (x-component)104
5.3 Quasi-analytical solution - Explosion at z = −200 km (z-component)105
5.4 Explosion at z = 200 km: Comparison of seismograms 105
5.5 FD solution - Explosion at z = −200 km. 106
5.6 SEM solution - Explosion at z = −200 km 107
5.7 SEM solution - Explosion at z = −200 km (5 ppw) 108
5.8 SEM solution - Explosion at z = −10 km 109
5.9 SEM solution - Dip-Slip source at z = −200 km 110
5.10 SEM solution - Dip-Slip source at z = −10 km 111
5.11 CPU benchmark of FDM and SEM for 3-D simulations 112
5.12 Relative solution error - explosion at z = −200 km 113
5.13 Comparison of performance between SEM and FDM - explosion

at z = −200 km . 114
5.14 Relative solution error - explosion at z = −10 km 115
5.15 Comparison of performance between SEM and FDM - expl.osion

at z = −10 km . 116
5.16 Relative solution error - dip-slip source at z = −200 km 117
5.17 Comparison of performance between SEM and FDM - dip-slip

source at z = −200 km . 118
5.18 Comparison of the velocity of the z-component at receiver 30 be-

tween Qseis (blue), FDM (green) and SEM (red) using 5 ppw for
a dip-slip source in 200 km depth. 119

5.19 Comparison of the velocity of the z-component at receiver 100
between Qseis (blue), FDM (green) and SEM (red) (5 ppw) for a
dip-slip source in 10 km depth. 119

5.20 Relative solution error - dip-slip source at z = −10 km 120
5.21 Comparison of performance between SEM and FDM - dip-slip

source at z = −10 km . 121

List of Tables

2.1 Gauss-Lobatto-Legendre and Chebychev Gauss-Lobatto colloca-
tion nodes for N = 5 . 32

4.1 . 84

A.1 GLL collcation points and integration weights for order N = 2, . . . , 7133
A.2 GLL collcation points and integration weights for order N = 8, . . . , 12134

157

Bibliography

Abramowitz, M.; Stegun, I. A. (Editors), Pocketbook of Mathematical Func-
tions, Abridged ed. of ”Handbook of Mathematical Functions”. Harri Deutsch,
Frankfurt a. M., 1984.

Aki, K.; Richards, P. G., Quantitative Seismology . University Science Books,
Sausalito, California, 2002.

Ampuero, J.-P.; Vilotte, J.-P.; Festa, G., Dynamic rupture with the spec-
tral element method: where do we stand? . In Proc. of the Workshop on Nu-
merical Modeling of Earthquake Source Dynamics (1.-3. Sept. 2003), Smolenice
Castle, Slovak Republic, 2003, p. 9.

Bronstein, J. N.; Semendjajew, K. A.; Musiol, G.; Mühlig, H.,
Taschenbuch der Mathematik, 4. Auflage. Harri Deutsch, Frankfurt a. M.,
1999.

CalTech, 2002, URL
http://www.gps.caltech.edu/~jtromp/research/downloads.html. Last
modified 11.06.2002.

Capdeville, Y., Méthode couplée éléments spectraux - solution modale pour la
propagation d’ondes dans la Terre à l’échelle globale. Ph.D. thesis, Université
Paris 7, Paris, France, 2000.

Capdeville, Y.; Chaljub, E.; Vilotte, J.-P.; Montagner, J.-P., Cou-
pling the spectral element method with a modal solution for elastic wave prop-
agation in global earth models . Geophys. J. Int., 152, 2003, 34–67.

Chaljub, E., Modélisation numérique de la propagation d’ondes sismiques en
géométrie sphérique: application à la sismologie globale (Numerical modelling
of the propagation of seismic waves in spherical geometrie: applicaton to global
seismologyi). Ph.D. thesis, Université Paris VII Denis Diderot, Paris, France,
2000.

Chaljub, E.; Capdeville, Y.; Vilotte, J.-P., Solving elastodynamics in a
fluid solid heterogeneous sphere: a parallel spectral element approximation on
non-conforming grids . J. Comput. Phys., 187, 2003, 457–491.

159

160 Bibliography

Clayton, R.; Engquist, B., Absorbing boundary conditions for acoustic and
elastic wave equations . Bull. Seismol. Soc. Am., 67(6), 1977, 1529–1540.

Clough, R. W., The finite element in plane stress analysis . In Proc. 2nd ASCE
Conf. on Electronic Computation, Pittsburgh, Pa., 1960.

Collino, F.; Tsogka, C., Application of the perfectly matched absorbing layer
model to the linear elastodynamic problem in anisotropic heterogeneous media.
Geophysics, 66(1), 2001, 294–307.

Fornberg, B., The pseudospectral method - Comparisons with finite differences
for the elastic wave equation. Geophysics, 52(04), 1987, 483–501.

Funaro, D., FORTRAN Routines for Spectral Methods . Instituto di Analisi
Numerica, Pavia, 1993.

Gable, C.; Cherry, T., 2000, URL
http://www.ees.lanl.gov/EES5/geomesh/catalogue/

NTS TYBO EMBED 00/methods1.html.
last modified 21.11.2000; e-mail: gable@lanl.gov, tcherry@lanl.gov.

Galerkin, B. G., Series solution of some problems of elastic equilibrium of rods
and plates (russian). Vestn. Inzh. Tech., 19, 1915, 897–908.

Geller, R. J.; Takeuchi, N., A new method for computing highly accurate
dsm synthetic seismograms . Geophys. J. Int., 123, 1995, 449–470.

Hughes, T. J. R., The Finite Element Method - Linear Static and Dynamic
Finite Element Analysis . Prentice Hall, Englewood Cliffs, London, 1987.

Jung, M.; Langer, U., Methode der finiten Elemente für Ingenieure. Teubner
Verlag, Wiesbaden, 2001.

Kelly, K. R.; Marfurt, K. J., Editor’s introduction to Chapter 1 - Classical
finite-difference and finite-element methods . In Marfurt, K. J. (Editor),
Numerical modeling of seismic wave propagation, Soc. Expl. Geophys., 1990,
pp. 1–3.

Komatitsch, D., Méthodes spectrales et éléments spectraux pour l’équation de
l’élastodynamique 2D et 3D en milieu hétérogène (Spectral and spectral-element
methods for the 2D and 3D elastodynamics equations in heterogeneous media).
Ph.D. thesis, Institut de Physique du Globe, Paris, France, 1997.

Komatitsch, D.; Barnes, C.; Tromp, J., Simulation of anisotropic wave
propagation based upon a spectral element method . Geophysics, 65(4), 2000,
1251–1260.

Bibliography 161

Komatitsch, D.; Liu, Q.; Tromp, J.; Süss, P.; Stidham, C.; Shaw, J. H.,
Simulations of strong ground motion in the Los Angeles Basin based upon the
spectral-element method . Bull. Seismol. Soc. Am., 2003a. Submitted.

Komatitsch, D.; Martin, R.; Tromp, J.; Taylor, M. A.; Wingate,
B. A., Wave propagation in 2-D elastic media using a spectral element method
with triangles and quadrangles . J. Comput. Acoust., 9(2), 2001, 703–718.

Komatitsch, D.; Tromp, J., Introduction to the spectral-element method for
3-D seismic wave propagation. Geophys. J. Int., 139, 1999, 806–822.

Komatitsch, D.; Tromp, J., Modeling of seismic wave propagation at the
scale of the Earth on a large Beowulf . Proceedings of the ACM/IEEE Su-
percomputing SC’2001 conference, 2001a. Published on CD-ROM and on
www.sc2001.org.

Komatitsch, D.; Tromp, J., Modeling seismic wave propagation on a 156 GB
PC cluster . Linux Journal, October 2001 issue, 2001b, 38–45.

Komatitsch, D.; Tromp, J., Spectral-element simulations of global seismic
wave propagation-I. Validation. Geophys. J. Int., 149, 2002a, 390–412.

Komatitsch, D.; Tromp, J., Spectral-element simulations of global seismic
wave propagation-II. 3-D models, oceans, rotation, and self-gravitation. Geo-
phys. J. Int., 150, 2002b, 303–318.

Komatitsch, D.; Tromp, J., A Perfectly Matched Layer absorbing boundary
condition for the second-order seismic wave equation. Geophys. J. Int., 154,
2003, 146–153.

Komatitsch, D.; Tsuboi, S.; Chen, J.; Tromp, J., A 14.6 billion degrees of
freedom, 5 teraflop, 2.5 terabyte earthquake simulation on the earth simulator .
Proceedings of the ACM/IEEE Supercomputing SC’2003 conference, 2003b.
In press.

Komatitsch, D.; Vilotte, J.-P., The spectral-element method: an efficient
tool to simulate the seismic response of 2D and 3D geological structures . Bull.
Seismol. Soc. Am., 88(2), 1998, 368–392.

Komatitsch, D.; Vilotte, J.-P.; Vai, R.; Castillo-Covarrubias, J. M.;
Sánchez-Sesma, F. J., The Spectral Element method for elastic wave equa-
tions: application to 2D and 3D seismic problems . Int. J. Numer. Meth. Engng.,
45, 1999, 1139–1164.

Kreiss, H. O.; Oliger, J., Comparison of accurate methods for the integration
of hyperbolic equations . Tellus, 24, 1972, 199–215.

162 Bibliography

Madariaga, R., Dynamics of an expanding circular fault . Bull. Seismol. Soc.
Am., 65, 1976, 163–182.

Maday, Y.; Patera, A. T., Spectral element methods for the incompressible
Navier-Stokes equations , 1989, 71–143. Editors: A. K. Noor and J. T. Oden.

Metz, T., Optimale Operatoren fr die numerische Simulation von Wellenaus-
breitung - Ableitung,Implementierung und Verifikation in 1,2und 3D . Master’s
thesis, Dept. für Geo- und Umweltwissenschaften, Sektion Geophysik, Ludwig-
Maximilians-Universität, München, Germany, 2003. Unpublished.

Müller-Hannemann, M., 2000, URL
http://www.math.tu-berlin.de/~mhannema/pictures/hex/dfold.html.
Last modified: 05.02.2000; e-mail: mhannema@math.TU-Berlin.DE.

Padovani, E.; Priolo, E.; Seriani, G., Low- and high-order finite element
method: Experience in seismic modeling . J. Comput. Acoust., 2(4), 1994, 371–
422.

Patera, A. T., A spectral element method for fluid dynamics: laminar flow in
a channel expansion. J. Comput. Phys., 54, 1984, 468–488.

Pearson, T., 2002, URL
http://www.astro.caltech.edu/ tjp/pgplot/. Last modified 20.10.2003.

Priolo, E., Earthquake ground motion simulation through the 2-D spectral ele-
ment method . In Paper presented at the Int. Conf. on Computational Acoustics
(ICTCA 1999), Trieste, Italy, 1999.

Priolo, E.; Carcione, J. M.; Seriani, G., Numerical simulation of interface
waves by high-order spectral modeling techniques . J. Acoust. Soc. Am., 95(2),
1994, 681–693.

Priolo, E.; Seriani, G., A numerical investigation of Chebyshev spectral ele-
ment method for acoustic wave propagation. In Proc. 13th IMACS Conf. on
Comp. Appl. Math.,v. 2 , Dublin, Ireland, 1991, pp. 551–556.

Ritz, W., Über eine neue methode zur lösung gewisser variations - probleme der
mathematischen physik . J. Reine Angew. Math., 135, 1909, 1–61.

Schwarz, H. R., Methode der Finiten Elemente, 2. Auflage. Teubner, Stuttgart,
1984.

Seriani, G., 3-D large-scale wave propagation modeling by a spectral element
method on a Cray T3E multiprocessor . Comp. Meth. Appl. Mech. Eng., 164,
1998, 235–247.

Bibliography 163

Seriani, G.; Priolo, E., Spectral element method for acoustic wave simulation
in heterogeneous media. Finite Elements in Analysis and Design, 16, 1994,
337–348.

Stacey, R., Improved transparent boundary formulations for the elastic wave
equation. Bull. Seismol. Soc. Am., 6(78), 1988, 2089–2097.

Turner, M. J.; Clough, R. W.; Martin, H. C.; Topp, L. J., Stiffness and
deflection analysis of complex structures . J. Aero. Sci., 23, 1956, 805–823.

Udias, A., Principles of Seismology . Cambridge Univ. Press, Cambridge, 1999.

Virieux, J., P-sv wave propagation in heterogeneous media: velocity-stress
finite-difference method . 51(4), 1986, 889–901.

Wang, R., A simple orthonormalization method for stable and efficient compu-
tation of green’s functions . Bull. Seismol. Soc. Am., 89(3), 1999, 733–741.

Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method, vol. 1 .
Butterworth-Heinemann, Oxford, 2000.

Selbständigkeitserklärung

Hiermit erkläre ich, daß ich die vorliegende Arbeit selbständig und nur unter
Verwendung der angegebenen Hilfsmittel und Quellen angefertigt habe.

München, den

165

