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Inverse Problems in Geophysics

What is an inverse problem?
 - Illustrative Example
 - Exact inverse problems
 - Nonlinear inverse problems

Examples in Geophysics
 - Traveltime inverse problems
 - Seismic Tomography
 - Location of Earthquakes
 - Global Electromagnetics
 - Reflection Seismology

Scope: Understand the concepts of data fitting and inverse 
problems and the  associated problems. Simple mathematical 
formulation as linear (-ized) systems. 
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What is an inverse problem?

Model m Data d

Forward Problem 

Inverse Problem
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Treasure Hunt 
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Treasure Hunt – Forward Problem

?

X
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X

Gravimeter

We have observed some values:

10, 23, 35, 45, 56 µgals

How can we relate the observed gravity 
values to the subsurface properties?

We know how to do the forward problem:
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This equation relates the (observed) gravitational potential to the 
subsurface density. 

-> given a density model we can predict the gravity field at the surface!
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Treasure Hunt – Trial and Error

?

X
XX

X

Gravimeter

What else do we know?

Density sand: 2,2 g/cm3

Density gold: 19,3 g/cm3

Do we know these values exactly?
How can  we find out whether and if so 
where is the box with gold?

X

One approach:

Use the forward solution to calculate many models for a rectangular box
situated somewhere in the ground and compare the theoretical (synthetic) 

data to the observations.

->Trial and error method
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Treasure Hunt – Model Space 

?

X
XX

X

Gravimeter

But ...

... we have to define plausible models 
for the beach. We have to somehow 
describe the model geometrically. 

-> Let us

- divide the subsurface into a rectangles with variable density
- Let us assume a flat surface

X

x x x x xsurface

sand

gold
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Treasure Hunt – Non-uniqueness 

X
XX

X

Gravimeter

Could we go through all possible models 
and compare the synthetic data with the
observations?

- at every rectangle two possibilities
(sand or gold)

- 250 ~ 1015 possible models

- Too many models!

X

- We have 1015 possible models but only 5 observations!
- It is likely that two or more models will fit the data (possibly perfectly well)

-> Nonuniqueness of the problem! 
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Treasure Hunt – A priori information 

X
XX

X

Gravimeter

Is there anything we know about the 
treasure?

- How large is the box?
- Is it still intact?
- Has it possibly disintegrated?
- What was the shape of the box?
- Has someone already found it?

This is independent information that we may have which is as important and
relevant as the observed data. This is colled a priori (or prior) information.
It will allow us to define plausible, possible, and unlikely models:

X

plausible possible unlikely
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Treasure Hunt – Uncertainties (Errors) 

X
XX

X

Gravimeter

Do we have errors in the data?

- Did the instruments work correctly?
- Do we have to correct for anything? 

(e.g. topography, tides, ...)

Are we using the right theory?

- Do we have to use 3-D models?
- Do we need to include the topography?
- Are there other materials in the ground apart from gold and sand?
- Are there adjacent masses which could influence the observations?

How (on Earth) can we quantify these problems?

X
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Treasure Hunt - Example

X
XX

X

Gravimeter

X

Models with less than 2% error.
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Treasure Hunt - Example

X
XX

X

Gravimeter

X

Models with less than 1% error.
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Inverse Problems - Summary

Inverse problems – inference about physical 
systems from data

X
XX

X

Gravimeter

X

- Data usually contain errors (data uncertainties)
- Physical theories are continuous 
- infinitely many models will fit the data (non-uniqueness)
- Our physical theory may be inaccurate (theoretical uncertainties)
- Our forward problem may be highly nonlinear
- We always have a finite amount of data

The fundamental questions are:

How accurate are our data?
How well can we solve the forward problem?
What independent information do we have on the model space (a priori 
information)?
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Corrected scheme for the real world

True Model m

Data d

Forward Problem 

Inverse ProblemEstimated Model
m~

Appraisal 
Problem 
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Linear(ized) Inverse Problems

Let us try and formulate the inverse problem mathematically:
Our goal is to determine the parameters of a  (discrete) model mi, i=1,...,m 
from a set of observed data dj j=1,...,n. Model and data are functionally 
related (physical theory) such that
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Note that mi need not be model parameters at particular points in space 
but they could also be expansion coefficients of orthogonal functions (e.g. 
Fourier coefficients, Chebyshev coefficients etc.). 

This is the nonlinear
formulation.
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Linear(ized) Inverse Problems

If the functions gi(mj)  between model and data are linear we obtain

jiji mGd =

in matrix form. If the functions Ai(mj)  between model and data are mildly 
non-linear we can consider the behavior of the system around some 
known (e.g. initial) model mj
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Linear(ized) Inverse Problems

We will now make the following 
definitions: ...)(
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Then we can write a linear(ized) problem for the nonlinear forward problem 
around some (e.g. initial) model m0 neglecting higher order terms:
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Linear(ized) Inverse Problems

Interpretation of this result:

1. m0 may be an initial guess for our physical model 
2. We may calculate (e.g. in a nonlinear way) the 

synthetic data d=f(m0).
3. We can now calculate the data misfit, ∆d=d-d0, where 

d0 are the observed data. 
4. Using some formal inverse operator A-1 we can 

calculate the corresponding model perturbation Dm. 
This is also called the gradient of the misfit function.

5. We can now calculate a new model m=m0+ Dm which 
will – by definition – is a better fit to the data. We can 
start the procedure again in an iterative way. 

mGd ΔΔ =
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Formulation

Linear(-ized) inverse problems can be formulated in the following way: 

jiji mGd =

(summation convention applies)

i=1,2,...,N number of data
j=1,2,...,M number of model parameters
Gij known   (mxn)

We observe:
- The inverse problem has a unique solution if N=M and det(G)≠0, i.e. 

the data are linearly independent
- the problem is overdetermined if N>M
- the problem is underdetermined if M>N
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Illustration – Unique Case

In this case N=M, and det(G) ≠0. Let us consider an example
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Let us check the determinant of this system:  det(G)=10
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Illustration – Overdetermined Case

In this case N>M, there are more data than model parameters.
Let us consider examples with M=2, an overdetermined system would 
exist if N=3.
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A physical experiment which could result in these data:
Individual Weight measurement of two masses m1 and m2 
leading  to the data d1 and d2 and weighing both together 
leads to d3. In matrix form:
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Illustration – Overdetermined Case

Let us consider this problem graphically

A common way to solve this problem is to minimize the 
difference between data vector d and the predicted data 
for some model  m such that                             

is minimal.
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Illustration – Overdetermined Case

Using the L2-norm leads us to the
least-squares formulation of the 
problem. The solution to the 
minimization (and thus the inverse 
problem) is given as: 

In our example the resulting (best) model estimation is:

dGG)(Gm~ T1T −=
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3/5
3/2~m

and is the model with the minimal distance to all three lines in the plot.

best model
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Illustration – Underdetermined Case

Let us assume we made one measurement of the combined weight of 
two masses:

Clearly there are infinitely many solutions to this problem. A model
estimate can be defined by choosing a model that fits the data exactly 
Am=d and has the smallest l2 norm ||m||. Using Lagrange multipliers 
one can show that the minimum norm solution is given by
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Nonlinear Inverse Problems

Assume we have a wildly nonlinear functional relationship 
between model and data

m)d g(=
The only option we have here is to try and go – in a sensible 

way – through the whole model space and calculate the 
misfit function

m)dL g(−=

and find the model(s) which have the minimal misfit. 
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Model Search

The way how to explore a model space is a science itself! 
Some key methods are:

1. Monte Carlo Method: Search in a random way through the 
model space and collect models with good fit. 

2. Simulated Annealing. In analogy to a heat bath, or the 
generation of crystal one optimizes the quality (improves the 
misfit) of an ensemble of models. Decreasing the 
temperature would be equivalent to reducing the misfit 
(energy).

3. Genetic Algorithms. A pool of models recombines and 
combines information, every generation only the fittest 
survive and give on the successful properties.

4. Evolutionary Programming. A formal generalization of the 
ideas of genetic algorithms.
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Inversion: the probabilistic approach

The misfit function

can also be interpreted as a
likelihood function:

describing a probability density function (pdf) defined over the
whole model space (assuming exact data and theory). This pdf
is also called the a posteriori probability. In the probabilistic 
sense the a posteriori pdf is THE solution to the inverse problem.

m))dm))dS(m) T g((g(( −−=

[ ]m))dm))d T
(m) g((g(( −−−= eσ
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Examples: Seismic Tomography

Data vector d: 

Traveltimes of phases observed at 
stations of the world wide seismograph 
network

Model m:

3-D seismic velocity model in the 
Earth’s mantle. Discretization using 
splines, spherical harmonics, 
Chebyshev polynomials or simply 
blocks.

Sometimes 100000s of travel times and a large number 

of  model blocks: underdetermined system
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Examples: Earthquake location

Data vector d: 

Traveltimes observed at various (at 
least 3) stations above the earthquake

Model m:

3 coordinates of the earthquake 
location (x,y,z).

Seismometers

Usually much more data than unknowns: 
overdetermined system
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Examples: Global Electromagnetism

Data vector d: 

Amplitude and Phase of magnetic field 
as a function of frequency

Model m:

conductivity in the Earth’s mantle

Usually much more unknowns than data: 
underdetermined system
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Examples: Reflection Seismology

Data vector d: 

ns seismograms with nt samples

-> vector length ns*nt 

Model m:

the seismic velocities of the 
subsurface, impedances, Poisson’s 
ratio, density, reflection coefficients, 
etc. 

receivers
Air gun
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Inversion: Summary 

We need to develop formal ways of

1. calculating an inverse operator for 
d=Gm  ->  m=G-1d

(linear or linearized problems)

2. describing errors in the data and theory (linear and 
nonlinear problems)

3. searching a huge model space for good models (nonlinear 
inverse problems)

4. describing the quality of good models with respect to the 
real world (appraisal). 
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